The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent p(x) > 1 that guarantee the uniform boundedness of the sequence Snα,α(f), n = 0,1,..., of Fourier sums with respect to the ultraspherical Jacobi polynomials Pkα,α(x) in the weighted Lebesgue space Lμp(
x)
([-1, 1]) with weight μ = μ(x) = (1 - x2)α, where α >-1/2. The case α = -1/2 is studied separately. It is shown that, for the uniform boundedness of the sequence Sn-1/2, -1/2 (f), n = 0,1,..., of Fourier—Chebyshev sums in the space Lμp(
x)
([-1,1]) with μ(x) = (1 - x2)-1/2, it suffices and, in a certain sense, necessary that the variable exponent p satisfy the Dini-Lipschitz condition of the form

\(\left| {p(x) - p(y)} \right| \leq \frac{d}{{ - \ln \left| {x - y} \right|}},\;\;\;\text{where}\;\left| {x - y} \right| \leq \frac{1}{2},\;\;x,y \in [ - 1,1],\;\;d > 0,\)
and the condition p(x) > 1 for all x ∈ [-1,1].

Авторлар туралы

I. Sharapudinov

Daghestan Scientific Center of Russian Academy of Sciences; Vladikavkaz Scientific Center of Russian Academy of Sciences; Daghestan State Pedagogical University

Хат алмасуға жауапты Автор.
Email: mz@mi-ras.ru
Ресей, Makhachkala, 367025; Vladikavkaz, 362008; Makhachkala, 367025

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019