Linear Congruences in Continued Fractions on Finite Alphabets
- Авторлар: Kan I.D.1
-
Мекемелер:
- Moscow Aviation Institute (National Research University)
- Шығарылым: Том 103, № 5-6 (2018)
- Беттер: 911-918
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150965
- DOI: https://doi.org/10.1134/S0001434618050279
- ID: 150965
Дәйексөз келтіру
Аннотация
A linear homogeneous congruence ay ≡ bY (mod q) is considered and an order-sharp upper bound for the number of its solutions is proved. Here a, b, and q are given jointly coprime numbers and y and Y are coprime variables in a given closed interval such that the number y/Y can be expanded in a continued fraction with partial quotients from some alphabet A ⊆ ℕ. For A = ℕ (and without the assumption that y and Y are coprime), a similar problem was solved by N. M. Korobov.
Негізгі сөздер
Авторлар туралы
I. Kan
Moscow Aviation Institute (National Research University)
Хат алмасуға жауапты Автор.
Email: igor.kan@list.ru
Ресей, Moscow
Қосымша файлдар
