Linear Congruences in Continued Fractions on Finite Alphabets


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A linear homogeneous congruence aybY (mod q) is considered and an order-sharp upper bound for the number of its solutions is proved. Here a, b, and q are given jointly coprime numbers and y and Y are coprime variables in a given closed interval such that the number y/Y can be expanded in a continued fraction with partial quotients from some alphabet A ⊆ ℕ. For A = ℕ (and without the assumption that y and Y are coprime), a similar problem was solved by N. M. Korobov.

作者简介

I. Kan

Moscow Aviation Institute (National Research University)

编辑信件的主要联系方式.
Email: igor.kan@list.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018