Multipliers in spaces of Bessel potentials: The case of indices of nonnegative smoothness


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aim of the paper is to study spaces of multipliers acting from the Bessel potential space Hps(ℝn) to the other Bessel potential space Hqt(ℝn). We obtain conditions ensuring the equivalence of uniform and standard multiplier norms on the space of multipliers

\(M\left[ {H_p^s({\mathbb{R}^n}) \to H_q^t({\mathbb{R}^n})} \right]fors,t \in \mathbb{R},p,q > 1.\)
In the case
\(p,q > 1,p \leqslant q,s > \frac{n}{p},t \geqslant 0,s - \frac{n}{p} \geqslant t - \frac{n}{q}\)
, the space M[Hps(ℝn) → Hqt(ℝn) can be described explicitly. Namely, we prove in this paper that the latter space coincides with the space Hq, unift(ℝn) of uniformly localized Bessel potentials introduced by Strichartz. It is also proved that if both smoothness indices s and t are nonnegative, then such a description is possible only for the given values of the indices.

Авторлар туралы

A. Belyaev

LomonosovMoscow State University

Хат алмасуға жауапты Автор.
Email: alexei.a.belyaev@gmail.com
Ресей, Moscow

A. Shkalikov

LomonosovMoscow State University

Email: alexei.a.belyaev@gmail.com
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017