Multipliers in spaces of Bessel potentials: The case of indices of nonnegative smoothness
- 作者: Belyaev A.A.1, Shkalikov A.A.1
-
隶属关系:
- LomonosovMoscow State University
- 期: 卷 102, 编号 5-6 (2017)
- 页面: 632-644
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150248
- DOI: https://doi.org/10.1134/S0001434617110049
- ID: 150248
如何引用文章
详细
The aim of the paper is to study spaces of multipliers acting from the Bessel potential space Hps(ℝn) to the other Bessel potential space Hqt(ℝn). We obtain conditions ensuring the equivalence of uniform and standard multiplier norms on the space of multipliers
\(M\left[ {H_p^s({\mathbb{R}^n}) \to H_q^t({\mathbb{R}^n})} \right]fors,t \in \mathbb{R},p,q > 1.\)![]()
In the case \(p,q > 1,p \leqslant q,s > \frac{n}{p},t \geqslant 0,s - \frac{n}{p} \geqslant t - \frac{n}{q}\)![]()
, the space M[Hps(ℝn) → Hqt(ℝn) can be described explicitly. Namely, we prove in this paper that the latter space coincides with the space Hq, unift(ℝn) of uniformly localized Bessel potentials introduced by Strichartz. It is also proved that if both smoothness indices s and t are nonnegative, then such a description is possible only for the given values of the indices.作者简介
A. Belyaev
LomonosovMoscow State University
编辑信件的主要联系方式.
Email: alexei.a.belyaev@gmail.com
俄罗斯联邦, Moscow
A. Shkalikov
LomonosovMoscow State University
Email: alexei.a.belyaev@gmail.com
俄罗斯联邦, Moscow
补充文件
