Two nontrivial solutions of boundary-value problems for semilinear Δγ-differential equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we study the existence of multiple solutions for the boundary-value problem

\({\Delta _\gamma }u + f\left( {x,u} \right) = 0in\Omega ,u = 0on\partial \Omega ,\)
where Ω is a bounded domain with smooth boundary in RN (N ≥ 2) and Δγ is the subelliptic operator of the type
\({\Delta _\gamma }u = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}u} \right)} ,{\partial _{{x_j}}}u = \frac{{\partial u}}{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \ldots ,{\gamma _N}} \right).\)
We use the three critical point theorem.

Sobre autores

D. Luyen

Department of Mathematics

Autor responsável pela correspondência
Email: dtluyen.dnb@moet.edu.vn
Vietnã, Ninh Nhat Ninh Binh city

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017