Two nontrivial solutions of boundary-value problems for semilinear Δγ-differential equations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we study the existence of multiple solutions for the boundary-value problem

\({\Delta _\gamma }u + f\left( {x,u} \right) = 0in\Omega ,u = 0on\partial \Omega ,\)
where Ω is a bounded domain with smooth boundary in RN (N ≥ 2) and Δγ is the subelliptic operator of the type
\({\Delta _\gamma }u = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}u} \right)} ,{\partial _{{x_j}}}u = \frac{{\partial u}}{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \ldots ,{\gamma _N}} \right).\)
We use the three critical point theorem.

About the authors

D. T. Luyen

Department of Mathematics

Author for correspondence.
Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Nhat Ninh Binh city

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.