On invariant graph subspaces of a J-self-adjoint operator in the Feshbach case


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a J-self-adjoint 2 × 2 block operator matrix L in the Feshbach spectral case, that is, in the case where the spectrum of one main-diagonal entry of L is embedded into the absolutely continuous spectrum of the other main-diagonal entry. We work with the analytic continuation of the Schur complement of amain-diagonal entry in Lz to the unphysical sheets of the spectral parameter z plane. We present conditions under which the continued Schur complement has operator roots in the sense of Markus–Matsaev. The operator roots reproduce (parts of) the spectrum of the Schur complement, including the resonances. We, then discuss the case where there are no resonances and the associated Riccati equations have bounded solutions allowing the graph representations for the corresponding J-orthogonal invariant subspaces of L. The presentation ends with an explicitly solvable example.

Авторлар туралы

S. Albeverio

Institut für Angewandte Mathematik und HCM

Хат алмасуға жауапты Автор.
Email: albeverio@uni-bonn.de
Германия, Bonn

A. Motovilov

Joint Institute for Nuclear Research and Dubna State University

Email: albeverio@uni-bonn.de
Ресей, Dubna

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016