On invariant graph subspaces of a J-self-adjoint operator in the Feshbach case


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a J-self-adjoint 2 × 2 block operator matrix L in the Feshbach spectral case, that is, in the case where the spectrum of one main-diagonal entry of L is embedded into the absolutely continuous spectrum of the other main-diagonal entry. We work with the analytic continuation of the Schur complement of amain-diagonal entry in Lz to the unphysical sheets of the spectral parameter z plane. We present conditions under which the continued Schur complement has operator roots in the sense of Markus–Matsaev. The operator roots reproduce (parts of) the spectrum of the Schur complement, including the resonances. We, then discuss the case where there are no resonances and the associated Riccati equations have bounded solutions allowing the graph representations for the corresponding J-orthogonal invariant subspaces of L. The presentation ends with an explicitly solvable example.

作者简介

S. Albeverio

Institut für Angewandte Mathematik und HCM

编辑信件的主要联系方式.
Email: albeverio@uni-bonn.de
德国, Bonn

A. Motovilov

Joint Institute for Nuclear Research and Dubna State University

Email: albeverio@uni-bonn.de
俄罗斯联邦, Dubna

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016