On idempotent τ-measurable operators affiliated to a von Neumann algebra


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let τ be a faithful normal semifinite trace on a von Neumann algebra M, let p, 0 < p < ∞, be a number, and let Lp(M, τ) be the space of operators whose pth power is integrable (with respect to τ). Let P and Q be τ-measurable idempotents, and let APQ. In this case, 1) if A ≥ 0, then A is a projection and QA = AQ = 0; 2) if P is quasinormal, then P is a projection; 3) if QM and ALp(M, τ), then A2Lp(M, τ). Let n be a positive integer, n > 2, and A = AnM. In this case, 1) if A ≠ 0, then the values of the nonincreasing rearrangement μt(A) belong to the set {0} ∪ [‖An−2−1, ‖A‖] for all t > 0; 2) either μt(A) ≥ 1 for all t > 0 or there is a t0 > 0 such that μt(A) = 0 for all t > t0. For every τ-measurable idempotent Q, there is aunique rank projection PM with QP = P, PQ = Q, and PM = QM. There is a unique decomposition Q = P + Z, where Z2 = 0, ZP = 0, and PZ = Z. Here, if QLp(M, τ), then P is integrable, and τ(Q) = τ(P) for p = 1. If AL1(M, τ) and if A = A3 and AA2M, then τ(A) ∈ R.

作者简介

A. Bikchentaev

Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: Airat.Bikchentaev@kpfu.ru
俄罗斯联邦, Kazan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016