Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions
- Autores: Starovoitov A.P.1, Kechko E.P.1
-
Afiliações:
- Skorina Gomel State University
- Edição: Volume 99, Nº 3-4 (2016)
- Páginas: 417-425
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149225
- DOI: https://doi.org/10.1134/S0001434616030111
- ID: 149225
Citar
Resumo
In this paper, we establish upper bounds for the moduli of zeros of Hermite–Padé approximations of type I for a system of exponential functions \(\left\{ {{e^{{\lambda _{{p^z}}}}}} \right\}_{p = 0}^k\), where \(\left\{ {{\lambda _p}} \right\}_{p = 0}^k\) are various arbitrary complex numbers. The proved statements supplement and generalize well-known results due to Saff and Varga, as well as those due to Stahl and Wielonsky, on the behavior of zeros of Hermite–Padé approximations for a set of exponential functions \(\left\{ {{e^{pz}}} \right\}_{p = 0}^k\).
Sobre autores
A. Starovoitov
Skorina Gomel State University
Autor responsável pela correspondência
Email: svoitov@gsu.by
Belarus, Gomel
E. Kechko
Skorina Gomel State University
Email: svoitov@gsu.by
Belarus, Gomel
Arquivos suplementares
