Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we establish upper bounds for the moduli of zeros of Hermite–Padé approximations of type I for a system of exponential functions \(\left\{ {{e^{{\lambda _{{p^z}}}}}} \right\}_{p = 0}^k\), where \(\left\{ {{\lambda _p}} \right\}_{p = 0}^k\) are various arbitrary complex numbers. The proved statements supplement and generalize well-known results due to Saff and Varga, as well as those due to Stahl and Wielonsky, on the behavior of zeros of Hermite–Padé approximations for a set of exponential functions \(\left\{ {{e^{pz}}} \right\}_{p = 0}^k\).

Sobre autores

A. Starovoitov

Skorina Gomel State University

Autor responsável pela correspondência
Email: svoitov@gsu.by
Belarus, Gomel

E. Kechko

Skorina Gomel State University

Email: svoitov@gsu.by
Belarus, Gomel

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016