Finding Solution Subspaces of the Laplace and Heat Equations Isometric to Spaces of Real Functions, and Some of Their Applications


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We single out subspaces of harmonic functions in the upper half-plane coinciding with spaces of convolutions with the Abel–Poisson kernel and subspaces of solutions of the heat equation coinciding with spaces of convolutions with the Gauss–Weierstrass kernel that are isometric to the corresponding spaces of real functions defined on the set of real numbers. It is shown that, due to isometry, the main approximation characteristics of functions and function classes in these subspaces are equal to the corresponding approximation characteristics of functions and function classes of one variable.

Авторлар туралы

D. Bushev

Lesya Ukrainka East-European National University

Хат алмасуға жауапты Автор.
Email: bushev-d@ukr.net
Украина, Lutsk

Yu. Kharkevich

Lesya Ukrainka East-European National University

Email: bushev-d@ukr.net
Украина, Lutsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018