Finding Solution Subspaces of the Laplace and Heat Equations Isometric to Spaces of Real Functions, and Some of Their Applications


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We single out subspaces of harmonic functions in the upper half-plane coinciding with spaces of convolutions with the Abel–Poisson kernel and subspaces of solutions of the heat equation coinciding with spaces of convolutions with the Gauss–Weierstrass kernel that are isometric to the corresponding spaces of real functions defined on the set of real numbers. It is shown that, due to isometry, the main approximation characteristics of functions and function classes in these subspaces are equal to the corresponding approximation characteristics of functions and function classes of one variable.

作者简介

D. Bushev

Lesya Ukrainka East-European National University

编辑信件的主要联系方式.
Email: bushev-d@ukr.net
乌克兰, Lutsk

Yu. Kharkevich

Lesya Ukrainka East-European National University

Email: bushev-d@ukr.net
乌克兰, Lutsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018