Finding Solution Subspaces of the Laplace and Heat Equations Isometric to Spaces of Real Functions, and Some of Their Applications


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We single out subspaces of harmonic functions in the upper half-plane coinciding with spaces of convolutions with the Abel–Poisson kernel and subspaces of solutions of the heat equation coinciding with spaces of convolutions with the Gauss–Weierstrass kernel that are isometric to the corresponding spaces of real functions defined on the set of real numbers. It is shown that, due to isometry, the main approximation characteristics of functions and function classes in these subspaces are equal to the corresponding approximation characteristics of functions and function classes of one variable.

Sobre autores

D. Bushev

Lesya Ukrainka East-European National University

Autor responsável pela correspondência
Email: bushev-d@ukr.net
Ucrânia, Lutsk

Yu. Kharkevich

Lesya Ukrainka East-European National University

Email: bushev-d@ukr.net
Ucrânia, Lutsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018