Algebra of Symmetries of Three-Frequency Resonance: Reduction of a Reducible Case to an Irreducible Case
- Авторлар: Karasev M.V.1, Novikova E.M.1
-
Мекемелер:
- National Research University Higher School of Economics
- Шығарылым: Том 104, № 5-6 (2018)
- Беттер: 833-847
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150449
- DOI: https://doi.org/10.1134/S0001434618110287
- ID: 150449
Дәйексөз келтіру
Аннотация
For the three-frequency quantum resonance oscillator, the reducible case, where the frequencies are integer and at least one pair of frequencies has a nontrivial common divisor, is studied. It is shown how the description of the algebra of symmetries of such an oscillator can be reduced to the irreducible case of pairwise coprime integer frequencies. Polynomial algebraic relations are written, and irreducible representations and coherent states are constructed.
Авторлар туралы
M. Karasev
National Research University Higher School of Economics
Хат алмасуға жауапты Автор.
Email: karasev.mikhail@gmail.com
Ресей, Moscow, 101000
E. Novikova
National Research University Higher School of Economics
Email: karasev.mikhail@gmail.com
Ресей, Moscow, 101000
Қосымша файлдар
