Algebra of Symmetries of Three-Frequency Resonance: Reduction of a Reducible Case to an Irreducible Case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the three-frequency quantum resonance oscillator, the reducible case, where the frequencies are integer and at least one pair of frequencies has a nontrivial common divisor, is studied. It is shown how the description of the algebra of symmetries of such an oscillator can be reduced to the irreducible case of pairwise coprime integer frequencies. Polynomial algebraic relations are written, and irreducible representations and coherent states are constructed.

Sobre autores

M. Karasev

National Research University Higher School of Economics

Autor responsável pela correspondência
Email: karasev.mikhail@gmail.com
Rússia, Moscow, 101000

E. Novikova

National Research University Higher School of Economics

Email: karasev.mikhail@gmail.com
Rússia, Moscow, 101000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018