Two nontrivial solutions of boundary-value problems for semilinear Δγ-differential equations
- Авторлар: Luyen D.T.1
-
Мекемелер:
- Department of Mathematics
- Шығарылым: Том 101, № 5-6 (2017)
- Беттер: 815-823
- Бөлім: Volume 101, Number 5, May, 2017
- URL: https://journals.rcsi.science/0001-4346/article/view/150041
- DOI: https://doi.org/10.1134/S0001434617050078
- ID: 150041
Дәйексөз келтіру
Аннотация
In this paper, we study the existence of multiple solutions for the boundary-value problem
\({\Delta _\gamma }u + f\left( {x,u} \right) = 0in\Omega ,u = 0on\partial \Omega ,\)![]()
where Ω is a bounded domain with smooth boundary in RN (N ≥ 2) and Δγ is the subelliptic operator of the type \({\Delta _\gamma }u = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}u} \right)} ,{\partial _{{x_j}}}u = \frac{{\partial u}}{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \ldots ,{\gamma _N}} \right).\)![]()
We use the three critical point theorem.Авторлар туралы
D. Luyen
Department of Mathematics
Хат алмасуға жауапты Автор.
Email: dtluyen.dnb@moet.edu.vn
Вьетнам, Ninh Nhat Ninh Binh city
Қосымша файлдар
