A Note on Campanato Spaces and Their Applications


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we obtain a version of the John–Nirenberg inequality suitable for Campanato spaces Cp,β with 0 < p < 1 and show that the spaces Cp,β are independent of the scale p ∈ (0,∞) in sense of norm when 0 < β < 1. As an application, we characterize these spaces by the boundedness of the commutators [b,Bα]j (j = 1, 2) generated by bilinear fractional integral operators Bα and the symbol b acting from Lp1 × Lp2 to Lq for p1, p2 ∈ (1,∞), q ∈ (0,∞) and 1/q = 1/p1 + 1/p2 − (α + β)/n.

作者简介

D. Wang

College of Mathematics and System Sciences

编辑信件的主要联系方式.
Email: Wangdh1990@126.com
台湾, Urumqi

J. Zhou

College of Mathematics and System Sciences

Email: Wangdh1990@126.com
台湾, Urumqi

Z. Teng

College of Mathematics and System Sciences

Email: Wangdh1990@126.com
台湾, Urumqi

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018