A Note on Campanato Spaces and Their Applications


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we obtain a version of the John–Nirenberg inequality suitable for Campanato spaces Cp,β with 0 < p < 1 and show that the spaces Cp,β are independent of the scale p ∈ (0,∞) in sense of norm when 0 < β < 1. As an application, we characterize these spaces by the boundedness of the commutators [b,Bα]j (j = 1, 2) generated by bilinear fractional integral operators Bα and the symbol b acting from Lp1 × Lp2 to Lq for p1, p2 ∈ (1,∞), q ∈ (0,∞) and 1/q = 1/p1 + 1/p2 − (α + β)/n.

Sobre autores

D. Wang

College of Mathematics and System Sciences

Autor responsável pela correspondência
Email: Wangdh1990@126.com
República da China, Urumqi

J. Zhou

College of Mathematics and System Sciences

Email: Wangdh1990@126.com
República da China, Urumqi

Z. Teng

College of Mathematics and System Sciences

Email: Wangdh1990@126.com
República da China, Urumqi

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018