Trace and Differences of Idempotents in C*-Algebras


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let φ be atrace on aunital C*-algebra \(\mathcal{A}\), let \(\mathfrak{M}_\varphi\) be the ideal of definition of the trace φ, and let \(P,Q\in\mathcal{A}\) be idempotents such that QP = P. If \(Q\in\mathfrak{M}_\varphi\) then \(P\in\mathfrak{M}_\varphi\) and 0 ≤ φ(P) ≤ φ(Q). If \(Q-P\in\mathfrak{M}_\varphi\) then φ(QP) ∈ ℝ+. Let \(A,B\in\mathcal{A}\) be tripotents. If AB = B and \(A\in\mathfrak{M}_\varphi\), then \(B\in\mathfrak{M}_\varphi\) and 0 ≤ φ(B2) ≤ φ(A2) < +∞. Let \(\mathcal{A}\) be a von Neumann algebra. Then

\(\varphi(|PQ-QP|)\le {\rm{min}}\{\varphi(P),\varphi(Q),\varphi(|P-Q|)\}\)
for all projections \(P,Q\le\mathcal{A}\). The following conditions are equivalent for a positive normal functional φ on a von Neumann algebra \(\mathcal{A}\):
  1. φ is a trace;

  2. φ(QP) ∈ ℝ+ for all idempotents \(P,Q\in\mathcal{A}\) with QP = P;

  3. φ(|PQQP|) ≤ min{φ(P), φ(Q)} for all projections \(P,Q\in\mathcal{A}\);

  4. φ(PQ + QP) ≤ φ(PQP + QPQ) for all projections \(P,Q\in\mathcal{A}\);.

About the authors

A. M. Bikchentaev

(Volga Region) Federal University

Author for correspondence.
Email: Airat.Bikchentaev@kpfu.ru
Russian Federation, Kazan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.