Trace and Differences of Idempotents in C*-Algebras
- 作者: Bikchentaev A.M.1
-
隶属关系:
- (Volga Region) Federal University
- 期: 卷 105, 编号 5-6 (2019)
- 页面: 641-648
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151723
- DOI: https://doi.org/10.1134/S0001434619050018
- ID: 151723
如何引用文章
详细
Let φ be atrace on aunital C*-algebra \(\mathcal{A}\), let \(\mathfrak{M}_\varphi\) be the ideal of definition of the trace φ, and let \(P,Q\in\mathcal{A}\) be idempotents such that QP = P. If \(Q\in\mathfrak{M}_\varphi\) then \(P\in\mathfrak{M}_\varphi\) and 0 ≤ φ(P) ≤ φ(Q). If \(Q-P\in\mathfrak{M}_\varphi\) then φ(Q − P) ∈ ℝ+. Let \(A,B\in\mathcal{A}\) be tripotents. If AB = B and \(A\in\mathfrak{M}_\varphi\), then \(B\in\mathfrak{M}_\varphi\) and 0 ≤ φ(B2) ≤ φ(A2) < +∞. Let \(\mathcal{A}\) be a von Neumann algebra. Then
\(\varphi(|PQ-QP|)\le {\rm{min}}\{\varphi(P),\varphi(Q),\varphi(|P-Q|)\}\)![]()
for all projections \(P,Q\le\mathcal{A}\). The following conditions are equivalent for a positive normal functional φ on a von Neumann algebra \(\mathcal{A}\):作者简介
A. Bikchentaev
(Volga Region) Federal University
编辑信件的主要联系方式.
Email: Airat.Bikchentaev@kpfu.ru
俄罗斯联邦, Kazan, 420008
补充文件
