On a Functional Equation Related to Jordan Triple Derivations in Prime Rings


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A classical result of Herstein asserts that any Jordan derivation on a prime ring with char(R) ≠ 2 is a derivation. It is our aim in this paper to prove the following result, which is in the spirit of Herstein’s theorem. Let R be a prime ring with char(R) = 0 or char(R) > 4, and let D: RR be an additive mapping satisfying the relation D(x4) = D(x)x3 + xD(x2)x + x3D(x) for all xR. In this case, D is a derivation.

作者简介

M. Fošner

Faculty of Logistics

编辑信件的主要联系方式.
Email: maja.fosner@um.si
斯洛文尼亚, Celje

B. Marcen

Faculty of Logistics

Email: maja.fosner@um.si
斯洛文尼亚, Celje

J. Vukman

Institute of Mathematics, Physics, and Mechanics

Email: maja.fosner@um.si
斯洛文尼亚, Ljubljana

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018