Instantons via breaking geometric symmetry in hyperbolic traps


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using geometrical and algebraic ideas, we study tunnel eigenvalue asymptotics and tunnel bilocalization of eigenstates for certain class of operators (quantum Hamiltonians) including the case of Penning traps, well known in physical literature. For general hyperbolic traps with geometric asymmetry, we study resonance regimes which produce hyperbolic type algebras of integrals of motion. Such algebras have polynomial (non-Lie) commutation relations with creation-annihilation structure. Over this algebra, the trap asymmetry (higher-order anharmonic terms near the equilibrium) determines a pendulum-like Hamiltonian in action-angle coordinates. The symmetry breaking term generates a tunneling pseudoparticle (closed instanton). We study the instanton action and the corresponding spectral splitting.

Sobre autores

M. Karasev

National Research University Higher School of Economics, Laboratory for Mathematical Methods in Natural Sciences

Autor responsável pela correspondência
Email: karasev.mikhail@gmail.com
Rússia, Moscow

E. Novikova

National Research University Higher School of Economics, Laboratory for Mathematical Methods in Natural Sciences

Email: karasev.mikhail@gmail.com
Rússia, Moscow

E. Vybornyi

National Research University Higher School of Economics, Laboratory for Mathematical Methods in Natural Sciences

Email: karasev.mikhail@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017