Instantons via breaking geometric symmetry in hyperbolic traps


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using geometrical and algebraic ideas, we study tunnel eigenvalue asymptotics and tunnel bilocalization of eigenstates for certain class of operators (quantum Hamiltonians) including the case of Penning traps, well known in physical literature. For general hyperbolic traps with geometric asymmetry, we study resonance regimes which produce hyperbolic type algebras of integrals of motion. Such algebras have polynomial (non-Lie) commutation relations with creation-annihilation structure. Over this algebra, the trap asymmetry (higher-order anharmonic terms near the equilibrium) determines a pendulum-like Hamiltonian in action-angle coordinates. The symmetry breaking term generates a tunneling pseudoparticle (closed instanton). We study the instanton action and the corresponding spectral splitting.

Авторлар туралы

M. Karasev

National Research University Higher School of Economics, Laboratory for Mathematical Methods in Natural Sciences

Хат алмасуға жауапты Автор.
Email: karasev.mikhail@gmail.com
Ресей, Moscow

E. Novikova

National Research University Higher School of Economics, Laboratory for Mathematical Methods in Natural Sciences

Email: karasev.mikhail@gmail.com
Ресей, Moscow

E. Vybornyi

National Research University Higher School of Economics, Laboratory for Mathematical Methods in Natural Sciences

Email: karasev.mikhail@gmail.com
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017