On the Hamiltonian property of linear dynamical systems in Hilbert space
- 作者: Treshchev D.V.1, Shkalikov A.A.2
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 101, 编号 5-6 (2017)
- 页面: 1033-1039
- 栏目: Volume 101, Number 6, June, 2017
- URL: https://journals.rcsi.science/0001-4346/article/view/150064
- DOI: https://doi.org/10.1134/S0001434617050303
- ID: 150064
如何引用文章
详细
Conditions for the operator differential equation \(\dot x = Ax\) possessing a quadratic first integral (1/2)(Bx, x) to be Hamiltonian are obtained. In the finite-dimensional case, it suffices to require that ker B ⊂ ker A*. For a bounded linear mapping x → Ωx possessing a first integral, sufficient conditions for the preservation of the (possibly degenerate) Poisson bracket are obtained.
作者简介
D. Treshchev
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: treschev@mi.ras.ru
俄罗斯联邦, Moscow
A. Shkalikov
Lomonosov Moscow State University
Email: treschev@mi.ras.ru
俄罗斯联邦, Moscow
补充文件
