On the Hamiltonian property of linear dynamical systems in Hilbert space
- Авторлар: Treshchev D.V.1, Shkalikov A.A.2
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Lomonosov Moscow State University
- Шығарылым: Том 101, № 5-6 (2017)
- Беттер: 1033-1039
- Бөлім: Volume 101, Number 6, June, 2017
- URL: https://journals.rcsi.science/0001-4346/article/view/150064
- DOI: https://doi.org/10.1134/S0001434617050303
- ID: 150064
Дәйексөз келтіру
Аннотация
Conditions for the operator differential equation \(\dot x = Ax\) possessing a quadratic first integral (1/2)(Bx, x) to be Hamiltonian are obtained. In the finite-dimensional case, it suffices to require that ker B ⊂ ker A*. For a bounded linear mapping x → Ωx possessing a first integral, sufficient conditions for the preservation of the (possibly degenerate) Poisson bracket are obtained.
Негізгі сөздер
Авторлар туралы
D. Treshchev
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: treschev@mi.ras.ru
Ресей, Moscow
A. Shkalikov
Lomonosov Moscow State University
Email: treschev@mi.ras.ru
Ресей, Moscow
Қосымша файлдар
