Quantitative Study of Relationships of Hydrogen, Methane, Radon, and the Atmospheric Electric Field


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper we develop a model representation of the relationships of hydrogen, methane, radon, and the atmospheric electric field based on the results of experimental observations. Bubble formations of hydrogen and methane are the only carriers of radon in the surficial soil layers and atmosphere. Light ions are formed as a result of ionization and, when combined with neutral condensation nuclei, they form heavy ions affecting the atmospheric electric field. Outside the hydrocarbon clusters, hydrogen and methane are related by an exponential relationship. Under stable weather conditions, the atmospheric radon and its inverse quantity, which is the atmospheric electric field, correlate with the radon content in the soil through the carrier-gases density. Owing to the lower molecular weight, hydrogen at comparable concentrations of volatile gases is the main carrier of radon into the surficial soil layers and atmosphere near the surface. At a methane-to-hydrogen concentration ratio of ~6.4, the volatile gases are equally involved in the transport of the ionizer. At an average ratio of their concentrations (~47), methane is the major carrier gas of radon. Upon increasing concentrations of carrier gases, the sensitivity of the atmospheric electric field to changes in their concentrations increases. Based on observations of the atmospheric electric field and the hydrogen and radon content in the atmosphere, the result significantly increases the accuracy of indirect control over the methane content in the soil.

Sobre autores

V. Shuleikin

Institute of Oil and Gas Problems, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shvn1947@yandex.ru
Rússia, Moscow, 119333


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies