Systems of Hydrodynamic Type that Approximate Two-Dimensional Ideal Fluid Equations
- Авторлар: Dymnikov V.P.1, Perezhogin P.A.1
-
Мекемелер:
- Institute of Numerical Mathematics
- Шығарылым: Том 54, № 3 (2018)
- Беттер: 232-241
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4338/article/view/148551
- DOI: https://doi.org/10.1134/S0001433818030040
- ID: 148551
Дәйексөз келтіру
Аннотация
Statistical properties of different finite-dimensional approximations of two-dimensional ideal fluid equations are studied. A special class of approximations introduced by A.M. Obukhov (systems of hydrodynamic type) is considered. Vorticity distributions over area and quasi-equilibrium coherent structures are studied. These coherent structures are compared to structures occurring in a viscous fluid with random forcing.
Негізгі сөздер
Авторлар туралы
V. Dymnikov
Institute of Numerical Mathematics
Хат алмасуға жауапты Автор.
Email: dymnikov@inm.ras.ru
Ресей, Moscow, 119333
P. Perezhogin
Institute of Numerical Mathematics
Email: dymnikov@inm.ras.ru
Ресей, Moscow, 119333
Қосымша файлдар
