Dynamics of a Wave Packet on the Surface of an Inhomogeneously Vortical Fluid (Lagrangian Description)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A nonlinear Schrödinger equation (NSE) describing packets of weakly nonlinear waves in an inhomogeneously vortical infinitely deep fluid has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is shown that the modulational instability criteria for the weakly vortical waves and potential Stokes waves on deep water coincide. The effect of vorticity manifests itself in a shift of the wavenumber of high-frequency filling. A special case of Gerstner waves with a zero coefficient at the nonlinear term in the NSE is noted.

作者简介

A. Abrashkin

National Research University Higher School of Economics

Email: pelinovsky@hydro.appl.sci-nnov.ru
俄罗斯联邦, Nizhny Novgorod, 603155

E. Pelinovsky

Institute of Applied Physics; Nizhny Novgorod State Technical University

编辑信件的主要联系方式.
Email: pelinovsky@hydro.appl.sci-nnov.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018