The prognostic role of cytokines in assessing the course of acute pancreatitis: a systematic review and meta-analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Acute pancreatitis (AP) is an inflammatory disease of the pancreas that can lead to potentially severe complications. Despite the availability of clinical scoring systems to predict disease severity, there remains a need for more accurate and rapid tools for early prognostication.

A systematic assessment of the significance of serum interleukin levels for predicting disease severity in patients with acute pancreatitis was performed.

This study was conducted according to the PRISMA guidelines. A systematic literature search (2013–2024) was performed using PubMed and Google Scholar. Data on the diagnostic accuracy of interleukins, specifically the area under the ROC curve (AUC), sensitivity, and specificity, were extracted and analyzed. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-regression and sensitivity analyses were also performed.

The meta-analysis included 11 studies of interleukin-6 (n = 1377) and 5 studies of interleukin-8 (n = 535). The pooled area under the ROC curve (AUC) for interleukin-6 was 0.84 by the random-effects model with high heterogeneity (I2 = 92%), for interleukin-8 — the pooled AUC was 0.843 (I2 = 80.76%). The area under the hierarchical summary ROC curve was 0.697 for interleukin-6 (sensitivity — 80.9%, specificity — 54.5%) and 0.595 for interleukin-8 (sensitivity — 87.7%, specificity — 39.6%), which indicates a moderate summary accuracy of both markers. A subgroup analysis of interleukin-6 using thresholds of ≥100 pg/mL demonstrated an AUC of 0.852 and a hierarchical summary ROC AUC of 0.621. For interleukin-8, a cut-off value of <39.55 pg/mL the pooled AUC was 0.726 (I2 = 80%), while a cut-off of ≥39.55 pg/mL resulted in an AUC of 0.949 (95% CI 0.904–0.995), I2 = 69.5%. These findings indicate that higher IL-8 thresholds yielded not only more accurate (AUC = 0.95) but also more homogeneous results (I2 reduced from 80% to 69.5%).

The dynamics of interleukin-22 levels demonstrated the highest prognostic accuracy among secondary cytokines (AUC = 0.857, sensitivity — 83%, specificity — 85%). Despite signs of publication bias, the results were robust in the sensitivity analysis.

Interleukin-6 is the most informative biomarker for the early prediction of severe acute pancreatitis. Interleukin-8 complements the severity assessment by reflecting neutrophil activation, whereas interleukins-10 and -22 indicate the balance of the inflammatory response and hold potential as therapeutic targets. The use of a cytokine profile in conjunction with clinical scoring systems may improve the accuracy of risk stratification and patient outcomes.

About the authors

Liudmila K. Orbelian

Kuban State Medical University

Author for correspondence.
Email: orbelyan@mail.ru
ORCID iD: 0000-0003-1428-393X
SPIN-code: 8123-4311

MD

Russian Federation, Krasnodar

Vladimir M. Durleshter

Kuban State Medical University; Regional Clinical Hospital No. 2, Krasnodar

Email: durleshter59@mail.ru
ORCID iD: 0000-0002-7420-0553
SPIN-code: 6229-6933

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Krasnodar; Krasnodar

References

  1. Silva-Vaz P, Abrantes AM, Castelo-Branco M, et al. Multifactorial scores and biomarkers of prognosis of acute pancreatitis: applications to research and practice. Int J Mol Sci. 2020;21(1):338. doi: 10.3390/ijms21010338 EDN: FEHVWB
  2. Hey-Hadavi J, Velisetty P, Mhatre S. Trends and recent developments in pharmacotherapy of acute pancreatitis. Postgrad Med. 2023;135(4):334–344. doi: 10.1080/00325481.2022.2136390 EDN: OOCNJX
  3. Leppäniemi A, Tolonen M, Tarasconi A, et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J Emerg Surg. 2019;14:27. doi: 10.1186/s13017-019-0247-0 EDN: MSWSPE
  4. Hirota M, Takada T, Kawarada Y, et al. JPN Guidelines for the management of acute pancreatitis: Severity assessment of acute pancreatitis. J Hepatobiliary Pancreat Surg. 2006;13(1):33–41 doi: 10.1007/s00534-005-1049-1 EDN: MNPJHV
  5. Silva-Vaz P, Abrantes, AM, Castelo-Branco M, et al. Murine models of acute pancreatitis: a critical appraisal of clinical relevance. Int J Mol Sci. 2019;20(11):2794 doi: 10.3390/ijms20112794 EDN: YOARXZ
  6. Silva-Vaz P, Abrantes AM, Morgado-Nunes S, et al. Evaluation of prognostic factors of severity in acute biliary pancreatitis. Int J Mol Sci. 2020;21(12):4300. doi: 10.3390/ijms21124300 EDN: SFIWEH
  7. Hu JX, Zhao CF, Wang SL, et al. Acute pancreatitis: a review of diagnosis, severity prediction and prognosis assessment from imaging technology, scoring system and artificial intelligence. World J Gastroenterol. 2023;29(37):5268–5291. doi: 10.3748/wjg.v29.i37.5268 EDN: NVEMFI
  8. Walkowska J, Zielinska N, Karauda P, et al. The pancreas and known factors of acute pancreatitis. J Clin Med. 2022;11:5565. doi: 10.3390/jcm11195565 EDN: GUKOZM
  9. Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis. Lancet. 2020;396(10252):726–734. doi: 10.1016/S0140-6736(20)31310-6 EDN: PUPZPQ
  10. Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 2015;386(9988):85–96. doi: 10.1016/S0140-6736(14)60649-8 EDN: UTVOUZ
  11. Singh P, Garg PK. Pathophysiological mechanisms in acute pancreatitis: current understanding. Indian J Gastroenterol. 2016;35(3):153–166. doi: 10.1007/s12664-016-0647-y EDN: XYXNDD
  12. Mititelu A, Grama A, Colceriu M-C, et al. Role of interleukin 6 in acute pancreatitis: a possible marker for disease prognosis. Int J Mol Sci. 2024;25(15):8283. doi: 10.3390/ijms25158283 EDN: REJTDL
  13. Aoun E, Chen J, Reighard D, et al. Diagnostic accuracy of interleukin-6 and interleukin-8 in predicting severe acute pancreatitis: a meta-analysis. Pancreatology. 2009;9(6):20777–20785. doi: 10.1159/000214191 EDN: NZDNWN
  14. Zhang J, Niu J, Yang J. Interleukin-6, interleukin-8 and interleukin-10 in estimating the severity of acute pancreatitis: an updated meta-analysis. Hepatogastroenterology. 2014;61(129):215–220.
  15. Metri A, Bush N, Singh VK. Predicting the severity of acute pancreatitis: current approaches and future directions. Surg Open Sci. 2024;19:109–117. doi: 10.1016/j.sopen.2024.03.012 EDN: QMLYXG
  16. Lee DW, Cho CM. Predicting severity of acute pancreatitis. Medicina (Kaunas). 2022;58(6):787. doi: 10.3390/medicina58060787 EDN: MFOBVM
  17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71
  18. Whiting PF, Rutjes AWS, Westwood ME, et al. Quadas-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi: 10.7326/0003-4819-155-8-201110180-00009
  19. Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2018;74(3):785–794. doi: 10.1111/biom.12817
  20. Kolber W, Dumnicka P, Maraj M, et al. Does the automatic measurement of interleukin 6 allow for prediction of complications during the first 48 h of acute pancreatitis? Int J Mol Sci. 2018;19(6):1820. doi: 10.3390/ijms19061820
  21. Khanna AK, Meher S, Prakash S, et al. Comparison of Ranson, Glasgow, MOSS, SIRS, BISAP, APACHE-II, CTSI Scores, IL-6, CRP, and procalcitonin in predicting severity, organ failure, pancreatic necrosis, and mortality in acute pancreatitis. HPB Surg. 2013;2013:367581. doi: 10.1155/2013/367581
  22. Ćeranić DB, Zorman M, Skok P. Interleukins and inflammatory markers are useful in predicting the severity of acute pancreatitis. Bosn J Basic Med Sci. 2020;20:99–105. doi: 10.17305/bjbms.2019.4253
  23. Orbelian L, Trembach N, Durleshter V. The role of inflammatory and hemostatic markers in the prediction of severe acute pancreatitis: an observational cohort study. Recent Adv Inflamm Allergy Drug Discov. 2024. doi: 10.2174/0127722708356543241209060544 EDN: DNHHEV
  24. Bhowmick M, Lal M, Kumawat A. Correlation of inflammatory biomarkers (interleukin-6, interleukin-8, and tumor necrosis factor-alpha) with severity of acute pancreatitis. India J Med Specialities. 2024;15(4):235–239. doi: 10.4103/injms.injms_194_23 EDN: PWWTIQ
  25. Sternby H, Hartman H, Johansen D, et al. IL-6 and CRP are superior in early differentiation between mild and non-mild acute pancreatitis. Pancreatology. 2017;17(4):550–554. doi: 10.1016/j.pan.2017.05.392
  26. Xu F, Hu X, Li SL. Value of serum CRP and IL-6 Assays combined with pancreatitis activity scoring system for assessing the severity of patients with acute pancreatitis. Pak J Med Sci. 2024;40(1Part-I):145–149. doi: 10.12669/pjms.40.1.7550 EDN: IEZPJB
  27. Tian F, Lin T, Zhu Q, et al. Correlation between severity of illness and levels of free triiodothyronine, interleukin-6, and interleukin-10 in patients with acute pancreatitis. Med Sci Monit. 2022;28:e933230. doi: 10.12659/MSM.933230 EDN: IUESYK
  28. Rao SA, Kunte AR. Interleukin-6: an early predictive marker for severity of acute pancreatitis. Indian J Crit Care Med. 2017;21(7):424–428. doi: 10.4103/ijccm.IJCCM_478_16
  29. Li J, Chen Z, Li L, et al. Interleukin-6 is better than C-reactive protein for the prediction of infected pancreatic necrosis and mortality in patients with acute pancreatitis. Front Cell Infect Microbiol. 2022;12:933221. doi: 10.3389/fcimb.2022.933221 EDN: FAEOJM
  30. Lin Xu, Meng Lin, Chao Liu, Guochao Zhu. The value of LAR and IL-6 in early diagnosis and prognostic assessment of severe acute pancreatitis. Nutrition Clinique et Métabolisme. 2025;39(2):142–148. doi: 10.1016/j.nupar.2025.04.002
  31. Penttilä AK, Lindström O, Hästbacka J, et al. Interleukin 8 and hepatocyte growth factor in predicting development of severe acute pancreatitis. Cogent Medicine. 2017;4(1):1396634. doi: 10.1080/2331205X.2017.1396634
  32. Langmead C, Lee PJ, Paragomi P, et al. A novel 5-cytokine panel outperforms conventional predictive markers of persistent organ failure in acute pancreatitis. Clin Transl Gastroenterol. 2021;12(5):e00351. doi: 10.14309/ctg.0000000000000351 EDN: MQIAXO
  33. El-Gamal AS, Osman NF, AlKhateap YM, Maarek AM. Role of interleukin-6, interleukin-8, and [beta]-2 microglobulin in assessment of severity of pancreatitis. Menoufia Med J. 2020;33(4):1335–1340.
  34. Carrière K, Khoury B, Günak MM, Knäuper B. Mindfulness-based interventions for weight loss: a systematic review and meta-analysis. Obes Rev. 2018;19(2):164–177. doi: 10.1111/obr.12623
  35. Rau B, Baumgart K, Paszkowski AS, et al. Clinical relevance of caspase-1 activated cytokines in acute pancreatitis: high correlation of serum interleukin-18 with pancreatic necrosis and systemic complications. Crit Care Med. 2001;29(8):1556–1562. doi: 10.1097/00003246-200108000-00010
  36. Liang J, Zhou Y, Wang Z, Chen H. Relationship between liver damage and serum levels of IL-18, TNF-alpha and NO in patients with acute pancreatitis. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(8):1912–1914.
  37. Endo S, Inoue Y, Fujino Y, et al. Interleukin 18 levels reflect the severity of acute pancreatitis. Res Commun Mol Pathol Pharmacol. 2001;110(5–6):285–291.
  38. Inagaki T, Hoshino M, Hayakawa T, et al. Interleukin-6 is a useful marker for early prediction of the severity of acute pancreatitis. Pancreas. 1997;14(1):1–8. doi: 10.1097/00006676-199701000-00001
  39. Laveda R, Martinez J, Munoz C, et al. Different profile of cytokine synthesis according to the severity of acute pancreatitis. World J Gastroenterol. 2005;11(34):5309–5313. doi: 10.3748/wjg.v11.i34.5309
  40. Kostić I, Spasić M, Stojanovic B, et al. Early cytokine profile changes in interstitial and necrotic forms of acute pancreatitis. Serbian J Exp Clin Res. 2015;16(1):33–37. doi: 10.1515/SJECR-2015-0005
  41. Sternby H, Hartman H, Thorlacius H, Regnér S. The initial course of IL-1β, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α with regard to severity grade in acute pancreatitis. Biomolecules. 2021;11(4):591. doi: 10.3390/biom11040591 EDN: GTVCRD
  42. Bai J, Bai J, Yang M. Interleukin-22 attenuates acute pancreatitis-associated intestinal mucosa injury in mice via STAT3 activation. Gut Liver. 2021;15(5):771–781. doi: 10.5009/gnl20210 EDN: VMQBTB
  43. Chen CC, Wang SS, Lee FY, et al. Proinflammatory cytokines in early assessment of the prognosis of acute pancreatitis. Am J Gastroenterol. 1999;94(1):213–218. doi: 10.1111/j.1572-0241.1999.00709.x EDN: BDGYQJ
  44. Jiang CF, Shiau YC, Ng KW, Tan SW. Serum interleukin-6, tumor necrosis factor alpha and C-reactive protein in early prediction of severity of acute pancreatitis. J Chin Med Assoc. 2004;67(9):442–446.
  45. Kumar S, Aziz T, Kumar R, et al. Diagnostic accuracy of interleukin-6 as a biomarker for early prediction of severe acute pancreatitis: a systematic review and meta-analysis. J Family Med Prim Care. 2025;14(2):667–674. doi: 10.4103/jfmpc.jfmpc_1366_24 EDN: JGFQZJ
  46. Vasseur P, Devaure I, Sellier J, et al. High plasma levels of the pro-inflammatory cytokine IL-22 and the anti-inflammatory cytokines IL-10 and IL-1ra in acute pancreatitis. Pancreatology. 2014;14(6):465–469. doi: 10.1016/j.pan.2014.08.005
  47. Jin M, Zhang H, Wu M, et al. Colonic interleukin-22 protects intestinal mucosal barrier and microbiota abundance in severe acute pancreatitis. FASEB J. 2022;36(3):e22174. doi: 10.1096/fj.202101371R EDN: ENCLXO

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. PRISMA flow diagram of study selection.

Download (287KB)
3. Fig. 2. Risk of bias assessment.

Download (341KB)
4. Fig. 3. Distribution of risk of bias and applicability across domains.

Download (218KB)
5. Fig. 4. Forest plot showing the areas under the ROC curves in studies of interleukin-6.

Download (144KB)
6. Fig. 5. Hierarchical summary ROC (HSROC) curve illustrating the role of interleukin-6 in predicting severe acute pancreatitis. AUC, area under the ROC curve; TPR, true positive rate; FPR, false positive rate.

Download (98KB)
7. Fig. 6. Hierarchical summary ROC (HSROC) curve illustrating the role of interleukin-6 in predicting severe acute pancreatitis for studies with a cutoff value ≥100 pg/mL. AUC, area under the ROC curve; TPR, true positive rate; FPR, false positive rate.

Download (96KB)
8. Fig. 7. Forest plot showing the areas under the ROC curves in studies of interleukin-8.

Download (111KB)
9. Fig. 8. Hierarchical summary ROC (HSROC) curve illustrating the role of interleukin-8 in predicting severe acute pancreatitis. AUC, area under the ROC curve; TPR, true positive rate; FPR, false positive rate.

Download (95KB)
10. Fig. 9. Hierarchical summary ROC (HSROC) curve illustrating the role of interleukin-8 in predicting severe acute pancreatitis for studies with a cutoff value ≥39.55 pg/mL. AUC, area under the ROC curve; TPR, true positive rate; FPR, false positive rate.

Download (100KB)

Copyright (c) 2025 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».