Photodynamic Inactivation of Uropathogenic Biofilm-Forming Microorganisms: A Pilot Study
- Authors: Kryazhev D.V.1, Streltsova O.S.2, Antonyan A.E.2, Ermolina G.B.1, Belyaeva E.V.1, Elagin V.V.2, Ignatova N.I.2, Krupin V.N.2
-
Affiliations:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
- Privolzhsky Research Medical University
- Issue: Vol 15, No 2 (2025)
- Pages: 133-140
- Section: Original articles
- URL: https://journals.rcsi.science/uroved/article/view/314190
- DOI: https://doi.org/10.17816/uroved676927
- EDN: https://elibrary.ru/VJFESI
- ID: 314190
Cite item
Abstract
BACKGROUND: Methods for microbial inactivation, including physical approaches aimed at the destruction of biofilms formed by uropathogenic microorganisms for the prevention of infectious and inflammatory diseases in urology, remain insufficiently studied. The development of new strategies in this field remains relevant.
AIM: To evaluate the feasibility of photodynamic inactivation of biofilms formed by typical representatives of uropathogenic microorganisms using an antiseptic agent with a bacteriostatic effect—methylene blue—possessing photochemical properties.
METHODS: Cultures of Staphylococcus aureus and Escherichia coli isolated from renal calculi of patients from a urology department were used. In vitro experiments on photodynamic inactivation of microorganisms were conducted on mature preformed biofilms. Irradiation was performed using a diode laser emitting at a wavelength of 662 nm through a sterile 0.1% methylene blue solution in continuous mode across five setups (three control, two experimental). After irradiation, biofilms on the cover glasses were fixed on microscope slides using colorless varnish. The prepared specimens were stained with acridine orange solution, dried in the dark, examined under a fluorescence microscope at ×100 magnification using an immersion system, and photographed with a digital camera. Images were digitally processed using 3D modeling technologies with ImageJ software version 1.52a.
RESULTS: The impact of the photoactive agent and laser irradiation was assessed at two power settings—450 mW and 1100 mW. In the first case, partial destruction of the biofilms was noted (41.9% of the original biofilm structure for S. aureus and 82.4% for E. coli), whereas in the second case, exposure at 1100 mW resulted in complete degradation of the mature multilayer biofilm into single cells without extracellular matrix, corresponding to 97.7% destruction of the original biofilm structure for S. aureus and 96.5% for E. coli.
CONCLUSION: This study is the first to demonstrate the feasibility of photodynamic inactivation of uropathogenic biofilm-forming microorganisms using a photochemically active agent—methylene blue. The promising results suggest that combined laser irradiation and methylene blue application may serve as an alternative or adjunct to systemic antibiotic therapy in urological practice.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitrii V. Kryazhev
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: micbiol2008@yandex.ru
ORCID iD: 0000-0002-0517-8065
SPIN-code: 4399-1375
Dr. Sci. (Biology)
Russian Federation, Nizhny NovgorodOlga S. Streltsova
Privolzhsky Research Medical University
Author for correspondence.
Email: strelzova_uro@mail.ru
ORCID iD: 0000-0002-9097-0267
SPIN-code: 9674-0382
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Nizhny NovgorodArtem E. Antonyan
Privolzhsky Research Medical University
Email: 5x5x5@inbox.ru
ORCID iD: 0000-0001-6494-7277
Russian Federation, Nizhny Novgorod
Galiya B. Ermolina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: labnikif@yandex.ru
ORCID iD: 0000-0003-0520-2456
SPIN-code: 1937-0629
Cand. Sci. (Biology)
Russian Federation, Nizhny NovgorodElena V. Belyaeva
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: labnikif@yandex.ru
ORCID iD: 0000-0001-8889-8801
SPIN-code: 7949-3100
Cand. Sci. (Biology)
Russian Federation, Nizhny NovgorodVadim V. Elagin
Privolzhsky Research Medical University
Email: elagin.vadim@gmail.com
ORCID iD: 0000-0003-2676-5661
SPIN-code: 3539-8728
Cand. Sci. (Biology)
Russian Federation, Nizhny NovgorodNadezhda I. Ignatova
Privolzhsky Research Medical University
Email: n.i.evteeva@gmail.com
ORCID iD: 0000-0002-4570-9342
SPIN-code: 2808-5521
Cand. Sci. (Biology)
Russian Federation, Nizhny NovgorodValentin N. Krupin
Privolzhsky Research Medical University
Email: vn.krupin@mail.ru
ORCID iD: 0000-0002-4887-4888
SPIN-code: 8892-7661
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Nizhny NovgorodReferences
- Daudova AD, Demina JZ, Genatullina GN, et al. Antibacterial resistance. The challenge of modernity. Antibiotics and Chemotherapy. 2023;68(3–4):66–75. doi: 10.37489/0235-2990-2023-68-3-4-66-75 EDN: VYJHQY
- Sklyarov BA, Netronin AA. Spread of multiple drug-resistant bacteria: risk factors and control measures. Scientific Aspect. 2023;1(9):98–102. EDN: VEQXXJ
- Ilyina TS, Romanova YuM. The role of bacterial biofilms in chronic infectious processes and the search for methods to combat them. Molecular Genetics, Microbiology and Virology. 2021;39(2):14–24. doi: 10.17116/molgen20213902114 EDN: RHLJAM
- Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189(22):7945–7947. doi: 10.1128/JB.00858-07
- Aswathanarayan JB, Vittal RR. Microbial biofilms and their control by various antimicrobial strategies. In: Microbial pathogens and strategies for combating them: science, technology and education. Méndez-Vilas A, editor. FORMATEX; 2013. P. 124–133.
- Chebotar IV, Bocharova YuA, Gur’ev AS, et al. Bacteria survival strategies in contact with antibiotics. Russian Clinical Laboratory Diagnostics. 2020;65(2):116–121. doi: 10.18821/0869-2084-2020-65-2-116-121 EDN: JOAIIC
- Grande R, Puca V, Muraro R. Antibiotic resistance and bacterial biofilm. Expert Opin Ther Pat. 2020;30(12):897–900. doi: 10.1080/13543776.2020.1830060 EDN: QLHACO
- Tim M. Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J Photochem Photobiol B. 2015;150:2–10. doi: 10.1016/j.jphotobiol.2015.05.010 EDN: VFPUNP
- Tanaka M, Mroz P, Dai T, et al. Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLOS ONE. 2012;7(6):e39823. doi: 10.1371/journal.pone.0039823
- Filonenko EV, Serova LG. Photodynamic therapy in the clinical practice. Biomedical Photonics. 2016;5(2):26–37. EDN: WBOFTX
- Al-Asousi F, Dadgostar A, Javer A. Sinonasal methicillin-resistant Staphylococcus aureus: updates on treatment. Curr Opin Otolaryngol Head Neck Surg. 2017;25(1):19–23. doi: 10.1097/MOO.0000000000000324
- Monzavi A, Chinipardaz Z, Mousavi M, et al. Antimicrobial photodynamic therapy using diode laser activated indocyanine green as an adjunct in the treatment of chronic periodontitis: a randomized clinical trial. Photodiagnosis Photodyn Ther. 2016;14:93–97. doi: 10.1016/j.pdpdt.2016.02.007 EDN: WUCZPP
- Safavi M, Sabourian R, Foroumadi A. Treatment of Helicobacter pylori infection: Current and future insights. World J Clin Cases. 2016;4(1):5–19. doi: 10.12998/wjcc.v4.i1.5
- Vt A, Paramanantham P, Sb SL, et al. Antimicrobial photodynamic activity of rose bengal conjugated multi walled carbon nanotubes against planktonic cells and biofilm of Escherichia coli. Photodiagnosis Photodyn Ther. 2018;24:300–310. doi: 10.1016/j.pdpdt.2018.10.013 EDN: NBKRGJ
- Ignatova NI, Elagin VV, Budruev IA, et al. Application of photodynamic inactivation against pathogens of urinary tract infections. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(4): 395–400. doi: 10.36488/cmac.2022.4.395-400 EDN: AZNLSG
- Streltsova O, Antonyan A, Ignatova N, et al. Preclinical studies on the safety and toxicity of photoditazine in the antibacterial photodynamic therapy of uropathogenic bacteria. Biomedicines. 2023;11(8):2283. doi: 10.3390/biomedicines11082283 EDN: XBGRVX
- O’Toole GA. Microtiter Dish Biofilm Formation Assay. J Vis Exp. 2011;(47):2437. doi: 10.3791/2437
- Kropotov VS, Zaslavskaya MI, Alexandrova NA, et al. Investigation of biofilm formation stages in bacterial pathogens of ENT infections by photometry and luminescent microscopy with 3D modeling. Russian Clinical Laboratory Diagnostics. 2023;68(12): 761–768. doi: 10.51620/0869-2084-2023-68-12-761-768 EDN: CFBODY
- Tarin-Pello A, Suay-Garcia B, Perez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022;20(8):1095–1108. doi: 10.1080/14787210.2022.2078308 EDN: SEEVWK
- Ignatova NI, Elagin VV, Ivanova TS, et al. Evaluation of the potential pathogenicity of microorganisms associated with urinary calculi. Russian Clinical Laboratory Diagnostics. 2022;67(6):369–373. doi: 10.51620/0869-2084-2022-67-6-369-373 EDN: BPRQHE
- Naumovich S, Plavsky V, Kuvshinov A. Antimicrobial photodynamic therapy: advantages, disadvantages and development prospects. Sovremennaya stomatologiya. 2020;(1):11–16. (In Russ.) EDN: INLZNY
- Stranadko EF, Kuleshov IYu, Karakhanov GI. Photodynamic effects on pathogenic microorganisms (Modern state-of-art in antimicrobial photodynamic therapy). Laser medicine. 2010;14(2):52–56. EDN: MNIQYB
- Liu Ya, Qin R, Zaat SAJ, et al. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res. 2015;1(3):140–167. doi: 10.18053/jctres.201503.002
- Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(2):155–160. doi: 10.1067/moe.2002.120051
- Ewerton GDM, Pavarina AC, Dovigo LN, et al. Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(3):392–401. doi: 10.1016/j.tripleo.2009.10.006
- Aveline BM, Redmond RW. Exclusive free radical mechanisms of cellular photosensitization. Photochem Photobiol. 1998;68(3): 266–275. doi: 10.1111/j.1751-1097.1998.tb09680.x
Supplementary files
