Microbiological monitoring in a urological hospital as a method for control of antibiotic resistance of uropathogens
- Authors: Slesarevskaya M.N.1, Spiridonova A.A.1, Mkrtchyan A.S.1, Kruchinova S.O.1, Petrov S.B.1, Al-Shukri A.S.1, Kuzmin I.V.1, Ponomareva Y.A.1, Reva S.A.1, Gorelov D.S.1
-
Affiliations:
- Academician I.P. Pavlov First St. Petersburg State Medical University
- Issue: Vol 13, No 3 (2023)
- Pages: 239-249
- Section: Original articles
- URL: https://journals.rcsi.science/uroved/article/view/148348
- DOI: https://doi.org/10.17816/uroved569178
- ID: 148348
Cite item
Abstract
BACKGROUND: A rational choice of antibacterial therapy for hospital infections is a condition for successful treatment of patients.
AIM: The aim of this study is a comparative assessment of the species composition of pathogens and the level of their resistance to antibacterial drugs in patients with complicated urinary tract infections in a urological hospital.
MATERIALS AND METHODS: An analysis of the results of microbiological examination of urine samples from 1317 patients (795 men and 522 women) with complicated urinary tract infection who were hospitalized in a urology clinic during the period 2020–2021 was carried out.
RESULTS: Gram-negative microflora was detected in 703 (53.4%) patients, gram-positive microflora in 531 (40.3%) patients and mixed microflora in 83 (6.3%) patients. Among gram-negative bacteria Escherichia coli (23.1%) and Klebsiella pneumoniae (16.1%) were predominate, Pseudomonas aeruginosa (4.9%) and Proteus mirabilis (2.8%) were less frequently detected. A high frequency of detection of gram-positive microflora of the genera Enterococcus (21.4%) and Staphylococcus (12.7%) was noted. When compared with the results of a similar study from 2018 to 2020 there is a decrease in the detection rate of E. coli from 28.2% to 23.1%. Antibiotic resistance of hospital strains of uropathogens varies significantly for different antimicrobial drugs. Most often resistance to representatives of three or more groups of antibiotics was observed in K. pneumoniae (46.6%), less commonly in E. coli (19.5%) and rarely in Enterococcus spp. (5.9%).
CONCLUSIONS: Microbiological monitoring allows us to assess the etiological structure and level of antibiotic resistance of nosocomial urinary tract infections. Local data on the sensitivity of microorganisms to antibacterial drugs make it possible to rationally carry out perioperative antibiotic prophylaxis and prescribe empirical therapy for urinary tract infections before obtaining the results of a microbiological study.
Full Text
##article.viewOnOriginalSite##About the authors
Margarita N. Slesarevskaya
Academician I.P. Pavlov First St. Petersburg State Medical University
Author for correspondence.
Email: mns-1971@yandex.ru
ORCID iD: 0000-0002-4911-6018
SPIN-code: 9602-7775
Cand. Sci. (Med.); Senior Research Fellow, Research Center of Urology of the Research Institute of Surgery and Emergency Medicine
Russian Federation, Saint PetersburgAnna A. Spiridonova
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: annaasbac@mail.ru
bacteriologist, head of the Laboratory for Bacteriological and Mycological Research, Department of Clinical Microbiology
Russian Federation, Saint PetersburgArsen S. Mkrtchyan
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: mkrarsensem@mail.ru
urologist, Urological Clinic
Russian Federation, Saint PetersburgSofya O. Kruchinova
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: kru4sof@gmail.com
ORCID iD: 0009-0000-8706-9219
student
Russian Federation, Saint PetersburgSergeii B. Petrov
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: petrov-uro@yandex.ru
ORCID iD: 0000-0003-3460-3427
https://www.1spbgmu.ru/ru/klinika/kliniki-pspbgmu/308-universitet/structura/universitetskaya-klinika/kliniki/251-klinika-urologii
Dr. Sci. (Med.), professor, head of the Research Center of Urology of the Research Institute of Surgery and Emergency Medicine
Russian Federation, Saint PetersburgAdel S. Al-Shukri
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: ad330@mail.ru
ORCID iD: 0000-0001-6543-8589
SPIN-code: 5024-2184
Dr. Sci. (Med.), professor, head of the Urological Division, Research Center of Urology, Research Institute of Surgery and Emergency Medicine
Russian Federation, Saint PetersburgIgor V. Kuzmin
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: kuzminigor@mail.ru
ORCID iD: 0000-0002-7724-7832
SPIN-code: 2684-4070
Dr. Sci. (Med.), professor of the Department of Urology
Russian Federation, Saint PetersburgYulia A. Ponomareva
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: uaponomareva@mail.ru
Cand. Sci. (Med.), chief of the Urological Division, Research Center of Urology, Research Institute of Surgery and Emergency Medicine
Russian Federation, Saint PetersburgSergeii A. Reva
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: sgreva79@mail.ru
ORCID iD: 0000-0001-5183-5153
SPIN-code: 8021-1510
Cand. Sci. (Med.), head of Oncourological Division, Research Center of Urology, Research Institute of Surgery and Emergency Medicine
Russian Federation, Saint PetersburgDmitriy S. Gorelov
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: dsgorelov@mail.ru
SPIN-code: 3138-5214
urologist, Urological Division No. 2 of the Urology Research Center, Research Institute of Surgery and Emergency Medicine
Russian Federation, Saint PetersburgReferences
- Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 2014;59(S2): S71–S75. doi: 10.1093/cid/ciu392
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0
- Vsemirnaya organizatsiya zdravookhraneniya. Globalnyi plan deistvii po borbe s ustoichivostyu k protivomikrobnym preparatam. VOZ, 2016. 40 p. (In Russ.)
- Kuzmenkov AYu, Vinogradova AG. Antimicrobial resistance monitoring: a review of information resources. Bulletin of Siberian Medicine. 2020;19(2):163–170. (In Russ.) doi: 10.20538/1682-0363-2020-2-163-170
- Yakovlev SV, Briko NI, Sidorenko SV, Protsenko DN, editors. Programma SKAT (Strategiya Kontrolya Antimikrobnoi Terapii) pri okazanii statsionarnoi meditsinskoi pomoshchi: Rossiiskie klinicheskie rekomendatsii. Moscow: Pero, 2018. 156 p. (In Russ.)
- Kuzmenkov AYu, Vinogradova AG, Trushin IV, et al. AMRmap — antibiotic resistance surveillance system in Russia. Clinical Microbiology and Antimicrobial Chemotherapy. 2021;23(2):198–204. (In Russ.) doi: 10.36488/cmac.2021.2.198-204
- Medina-Polo J, Naber KG, Bjerklund Johansen TE. Healthcare-associated urinary tract infections in urology. GMS Infect Dis. 2021;9: Doc05. doi: 10.3205/id000074
- Borisov VV. Diagnosis and therapy of urinary infections. What should always remember (clinical lecture). Part 2. Urology reports (St. Petersburg). 2017;7(4):60–66. (In Russ.) doi: 10.17816/uroved7460-66
- Royuk RV, Yarovoy SK, Shikina IB. Antibiotic resistance of uropathogens in patients with nephrolithiasis and concomitant coronary heart disease. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2022;15(4):453–462. (In Russ.) doi: 10.17749/2070-4909/farmakoekonomika.2022.134
- Palagin IS, Sukhorukova MV, Dekhnich AV, et al. Complicated community-acquired urinary tract infections in adult patients in Russia. Clinical Microbiology and Antimicrobial Chemotherapy. 2014;16(1):39–56. (In Russ.)
- Savitskaya KI, Kruglov EE, Kutyrev VV, et al editors. Tekhnika sbora i transportirovaniya biomaterialov v mikrobiologicheskie laboratorii: Metodicheskie ukazaniya. Moscow: Federalnyi tsentr gigieny i ehpidemiologii Rospotrebnadzora, 2006. 126 p. (In Russ.)
- Chebotar IV, Polikarpova SV, Bocharova YuA, Mayansky NA. Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of bacteria and fungi of the pathogenicity group III and IV. Laboratory Service. 2018;7(2):78–86. (In Russ.) doi: 10.17116/labs20187278-86
- EUCAST. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing (15 January, 2022). EUCAST Guidance Documents. 3 p.
- Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x
- Slesarevskaya MN, Spiridonova AA, Krasnova MV, et al. Microbiological monitoring of causative agents of nosocomial infection in the urological clinic. Urology reports (St. Petersburg). 2020;10(4): 293–300. (In Russ.) doi: 10.17816/uroved54607
- Uchvatkin GV, Gaivoronskiy EA, Slesarevskaya MN. Urosepsis. Pathogenesis, diagnosis and treatment. Urology reports (St. Petersburg). 2020;10(1):81–91. (In Russ.) doi: 10.17816/uroved10181-91
- Exner M, Bhattacharya S, Christiansen B, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control. 2017;12:Doc05. doi: 10.3205/dgkh000290
- Pisanenko DN, Gasrataliev VE, Gorshkova TN, et al. Microbiological analysis as effective tool for optimization of empirical antibiotic therapy in the urological clinic. Urologiia. 2018;(6):45–51. (In Russ.) doi: 10.18565/urology.2018.6.45-51
- Kotov SV, Pulbere SA, Belomyttsev SV, et al. Antibiotic resistance — a new challenge of modern urology. Experimental and Clinical Urology. 2020;13(5):113–119. (In Russ.) doi: 10.29188/2222-8543-2020-13-5-113-119
- Codelia-Anjum A, Lerner LB, Elterman D, et al. Enterococcal urinary tract infections: A review of the pathogenicity, epidemiology, and treatment. Antibiotics (Basel). 2023;12(4):778. doi: 10.3390/antibiotics12040778
- Dunny GM, Hancock LE, Shankar N. Enterococcal biofilm structure and role in colonization and disease. 2014 Feb 14. Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: from commensals to leading causes of drug resistant infection. Boston: Massachusetts Eye and Ear Infirmary, 2014.
- Ch’ng J-H, Chong KKL, Lam LN, et al. Biofilm-associated infection by enterococci. Nat Rev Microbiol. 2019;17(2):82–94. doi: 10.1038/s41579-018-0107-z
- Tien BYQ, Goh HMS, Chong KKL, et al. Enterococcus faecalis promotes innate immune suppression and polymicrobial catheter-associated urinary tract Infection. Infect Immun. 2017;85(12):e00378–17. doi: 10.1128/IAI.00378-17
- Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–278. doi: 10.1038/nrmicro2761
- Jones RN, Pfaller MA. Antimicrobial activity against strains of Escherichia coli and Klebsiella spp. with resistance phenotypes consistent with an extended-spectrum beta-lactamase in Europe. Clin Microbiol Infect. 2003;9(7):708–712. doi: 10.1046/j.1469-0691.2003.00555.x
- Clinical and Laboratory Standards Institute (CLSI). M 100. Performance standards for antimicrobial susceptibility testing. 31st edition. USA: Laboratory Stabdards Institute, 2021. 351 p.
- Yakovlev SV, Suvorova MP. Nosocomial urinary tract infections. Urologiia. 2016;(3-S3):45–64. (In Russ.)
- Beloborodov VB, Goloshchapov OV, Gusarov VG, et al. Diagnostika i antimikrobnaya terapiya infektsiĬ, vyzvannykh polirezistentnymi shtammami mikroorganizmov. Metodicheskie rekomendatsii. 2022. (In Russ.)
- Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40(10):2053–2068. doi: 10.1007/s10096-021-04296-1
- Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33(2):e00047–19. doi: 10.1128/CMR.00047-19
- Kazmierczak KM, Karlowsky JA, de Jonge BLM, et al. Epidemiology of carbapenem resistance determinants identified in meropenem-nonsusceptible enterobacterales collected as part of a global surveillance program, 2012 to 2017. Antimicrob Agents Chemother. 2021;65(7):e0200020. doi: 10.1128/AAC.02000-20
- Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018;56(11):e01140–18. doi: 10.1128/JCM.01140-18
- Perepanova TS, Kozlov RS, Rudnov VA, et al. Antimikrobnaya terapiya i profilaktika infektsii pochek, mochevyvodyashchikh putei i muzhskikh polovykh organov. Federal’nye klinicheskie rekomendatsii. Alyaev YuG, Apolikhin OI, Pushkar’ DYu, et al editors. Moscow, 2022. 126 p. (In Russ.)
- Gutu AD, Sgambati N, Strasbourger P, et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204–2215. doi: 10.1128/AAC.02353-12
Supplementary files
