Pathological anatomy of reparative processes in the resected kidney treated with α-tocopherol acetate in experiment

Cover Page

Cite item

Full Text

Abstract

Violation of the integrity of the kidney parenchyma during organ-preserving surgery is always accompanied by functional impairment in that part of the organ. This is due to mechanical damage to the nephron and the development of aseptic necrosis in the area of the resection, followed by development of an ischemic zone that expands during the repair process due to disrupted parenchymal cell metabolism and pressure from regenerating connective tissue.

Objective. To investigate the effect of α-tocopherol acetate on repair processes in the kidney parenchyma after an organ-preserving operation in a rat model.

Materials and methods. An experimental study was performed on 60 white laboratory rats that underwent resection of the lower pole of the left kidney. Postoperatively, a study group (n = 30) underwent intramuscular injections of a 10% α-tocopherol acetate oil solution, 0.2 ml 2 times a day for 5 days. A control group (n = 30) were left untreated.

Results. Compared with the control group, animals in the study group had a narrower zone of total necrosis and less pronounced inflammation and vascular stasis on days 7, 14, and 28 after the operation.

Conclusion. Use of the natural antioxidant α-tocopherol acetate in the postoperative period of organ-preserving kidney surgery may accelerate reparative processes in the damaged parenchyma.

About the authors

Igor S. Shormanov

Yaroslavl State Medical University

Author for correspondence.
Email: i-s-shormanov@yandex.ru

Doctor of Medical Science, Professor, Head of the Department of Urology and Nephrology

Russian Federation, Yaroslavl

Marina S. Los

Yaroslavl Regional Clinical Hospital

Email: 922099@mail.ru

Candidate of Medical Science, Urologist

Russian Federation, Yaroslavl

Natalia S. Shormanova

Yaroslavl State Medical University

Email: 922099@mail.ru

Candidate of Medical Sciences, Assistant, Department of Pathological Anatomy

Russian Federation, Yaroslavl

References

  1. Дряженков И.Г., Комлев Д.Л., Лось М.С. Факторы ишемического повреждения почки при ее резекции // Клиническая медицина. - 2013. - Т. 91. - № 6. - С. 21-25. [Dryazhenkov IG, Komlev DL, Los MS. Factors of ischemic injury of the kidney when it is resected. Klinicheskaya meditsina. 2013;91(6):21-25. (In Russ.)]
  2. Индароков Т.Р., Серегин А.В., Лоран О.Б., и др. Превентивный гемостатический шов при открытой резекции почки как один из способов сохранения почечной функции // Онкоурология. - 2017. - Т. 13. - № 3. - С. 39-45. [Indarokov TR, Seregin AV, Loran OB, et al. Preventive hemostatic suture during open kidney resection as an option to preserve the renal function. Onkourologiya. 2013;9(1):17-23. (In Russ.)]. doi: 10.17650/1726-9776-2017-13-3-39-45.
  3. Попов С.В., Гусейнов Р.Г., Горшков А.Н., и др. Изменения ультраструктурной организации почки в условиях экспериментально смоделированной тепловой ишемии при оперативном вмешательстве // Вестник Санкт-Петербургского университета. - 2016. - Серия 11. - № 1. - С. 104-119. [Popov SV, Guseinov RG, Gorshkov AN, et al. Changes in the ultrastructural organization of the kidney under the conditions of experimental model thermal ischemia in surgical intervention. Vestnik Sankt-Peterburgskogo universiteta. 2016;11(1):104-119. (In Russ.)]
  4. Aryamanesh S, Ebrahimi SM, Abotaleb N, et al. Role of endogenous vitamin E in renal ischemic preconditioning process: differences between male and female rats. Iran Biomed J. 2012;16(1):44-51.
  5. Shokeir AA, Barakat N, Hussein AA, et al. Role of combination of L-arginine and α-tocopherol in renal transplantation ischaemia/reperfusion injury: a randomized controlled experimental study in a rat model. BJU Int. 2011;108(4):612-618. doi: 10.1111/j.1464-410X.2010.09943.x.
  6. Yurdakul T, Kulaksizoglu H, Pişkin MM, et al. Combination antioxidant effect of α-tocoferol and erdosteine in ischemia-reperfusion injury in rat model. Int Urol Nephrol. 2010;42(3):647-655. doi: 10.1007/s11255-009-9641-y.
  7. Кирпатовский В.И., Голод Е.А., Надточий О.Н., Обухова Т.В. Влияние α-токоферола на парциальные функции ишемизированной почки // Урология. - 2006. - № 5. - С. 80-84. [Kirpatovskiĭ VI, Golod EA, Nadtochii ON, Obukhova TV. Effects of alpha-tocopherol on partial functions of the ischemic kidney. Urologiia. 2006;(5):80-84 (In Russ.)]
  8. Gurel A, Armutcu F, Sahin S, et al. Protective role of alpha-tocopherol and caffeic acid phenethyl ester on ischemia-reperfusion injury via nitric oxide and myeloperoxidase in rat kidneys. Clin Chim Acta. 2004;338(1-2):33-41. doi: 10.1016/j.cccn.2003.09.013.
  9. Avunduk MC, Yurdakul T, Erdemli E, Yavuz A. Prevention of renal damage by alpha tocopherol in ischemia and reperfusion models of rats. Urol Res. 2003;31(4):280-285. doi: 10.1007/s00240-003-0329-y.
  10. Шорманов И.С., Лось М.С. Патофизиология кортико-симпато-адреналовой системы в послеоперационном периоде парциальной нефрэктомии // Урологические ведомости. - 2018. - Т. 8. - № 2. - С. 11-17. [Shormanov IS, Los MS. Pathophysiology of the cortico-sympathoadrenal system in the postoperative period of partial nephrectomy. Urologicheskie vedomosti. 2018;8(2):11-17. (In Russ.)]. doi: 10.17816/uroved8211-17.
  11. Rhoden EL, Pereira-Lima L, Telöken C, et al. Beneficial effect of alpha-tocopherol in renal ischemia-reperfusion in rats. Jpn J Pharmacol. 2001;87(2):164-166. doi: 10.1254/jjp.87.164.
  12. Голод Е.А. Перекисное окисление мембранных фосфолипидов и Ca-зависимая активность АТФазы микросомальных фракций, выделенных из ткани почек крысы при термической ишемии с защитой альфа-токоферола и без нее // Урология и нефрология. - 1997. - № 5. - С. 5-9. [Golod EA. The membrane phospholipid peroxidation and Ca-dependent ATPase activity of the microsomal fractions isolated from rat renal tissue in thermal ischemia with and without alpha-tocopherolprotection. Urologiia i Nefrologiia. 1997;(5):5-9. (In Russ.)]
  13. Кирпатовский В.И., Никифорова Н.В., Кудрявцев Ю.В., Надточий О.Н. Использование эмульсии альфа-токоферола для антиоксидантной защиты ишемизированных и консервированных почек // Бюллетень экспериментальной биологии и медицины. - 1996. - Т. 121. - № 5. - С. 499-503. [Kirpatovskii VI, Nikiforova NV, Kudriavtsev IuV, Nadtochii ON. Use of an alpha-tocopherol emulsion for antioxidant protection of ischemic and conserved kidneys. Bjulleten eksperimentalnoj biologii i mediciny. 1996;121(5):499-502. (In Russ.)]
  14. Takenaka M, Tatsukawa Y, Dohi K, et al. Protective effects of alpha-tocopherol and coenzyme Q10 on warm ischemic damages of the rat kidney. Transplantation. 1981;32(2):137-141. doi: 10.1097/00007890-198108000-00010.
  15. Uysal F, Girgin FK, Tuzun S. Effect of vitamin E on antioxidant enzymes and nitric oxide in ischemia-reperfused kidney injury. Biochem Mol Biol Int. 1998;44(6):1255-1263. doi: 10.1080/15216549800202352.
  16. Aktoz Т, Aydogdu N, Alagol В, et al. The protective effects of melatonin and vitamin E against renal ischemia-reperfusion injury in rats. Ren Fail. 2007;29(5):535-542. doi: 10.1080/08860220701391738.
  17. Федорук А.С., Гоженко А.И., Роговый Ю.Е. Защитное воздействие α-токоферола на функцию почек и перекисное окисление липидов при острой гемической гипоксии // Патологическая физиология и экспериментальная терапия. - 1998. - № 4. - С. 35-38. [Fedoruk AS, Gozhenko AI, Rogovy YuE. Protective effect of α-to-caffeine on kidney function and lipid peroxidation in acute hemic hypoxia. Pathological physiology and experimental therapy. 1998;(4):35-38. (In Russ.)]
  18. Надточий О.Н. Профилактика постишемических функциональных расстройств почки при операциях с временных прекращением почечного кровотока (экспериментальное исследование): дис. … канд. мед. наук. - М., 2000. [Nadtochii ON. Prophylaxis of postischemic functional disorders of the kidney during operations with temporary discontinuance of renal blood flow (experimental study). [dissertation] Moscow; 2000. (In Russ.)]. Доступно по: http://medical-diss.com/medicina/patofiziologicheskoe-obosnovanie-ispolzovaniya-antioksidantov-dlya-vosstanovleniya-funktsii-pochek-pri-eksperimentalnom-p. Ссылка активна на 07.09.2018.
  19. Кирпатовский В.И., Надточий О.Н., Сыромятникова Е.В. Возможности пролонгации допустимых сроков ишемии почки при использовании разных вариантов противоишемической защиты // Урология. - 2003. - № 3. - С. 7-10. [Kirpatovsky VI, Nadtochy ON, Syromyatnikova EV. Possibilities of prolonging the permissible periods of kidney ischemia when using different variants of anti-ischemic protection. Urologiia. 2003;(3):7-10. (In Russ.)]
  20. Barrera-Chimal J, Estrela GR, Lechner SM, et al. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling. Kidney Int. 2018;93(6):1344-1355. doi: 10.1016/j.kint.2017.12.016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 7. Hematoxylin and eosin stain, ×200. a: Necrosis of all tissue components of the kidney and hemorrhage in the glomerular capillary loops. b: Hemorrhagic infiltrate of external areas in the necrotic zone. с: Hemorrhagic infiltrate of external areas in the necrotic zone, with hemorrhages in the stroma of the destroyed renal parenchyma

Download (301KB)
3. Fig. 2. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 7. Hematoxylin and eosin stain, ×200. The border between the necrotic and intact renal parenchyma is populated mainly by polynuclear and a very few mononuclear leucocytes with no signs of fibrillogenesis

Download (289KB)
4. Fig. 3. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 7. Hematoxylin and eosin stain, ×200. a: Micro abscess in the necrotic part of the kidney; the surrounding tissue is impregnated with blood. b, c: A microabscess is adjacent to dystrophic but viable renal parenchyma. There is no hemorrhage around the microabscess

Download (339KB)
5. Fig. 4. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 7. ×200. a: Pronounced congestion and edema of the medullary stroma. Hematoxylin and eosin stain. b: Impaired arterial tone of medium cortical arteries. Hart elastin stain. c: Hemorrhage in the stroma and hydropic degeneration of tubular epithelial cells. Hematoxylin and eosin

Download (303KB)
6. Fig. 5. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 7. ×200. a: Hydropic degeneration and necrosis of tubular epithelial cells with granular casts in the tubular lumen, and a leucocyte infiltration in the stroma. Hematoxylin and eosin stain. b: Hydropic degeneration and necrosis of tubular epithelial cells and in the collectro tubule with granular casts in the tubular lumen, a leucocyte infiltration in the stroma. Hematoxylin and eosin stain. c: Glycogen breakdown in the tubular epithelium. Periodic acid–Schiff stain

Download (302KB)
7. Fig. 6. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 14. Hematoxylin and eosin stain. Morphonuclear leukocyte infiltration and young fibroblasts and fibrillar structures on the border between the necrotic and intact renal parenchyma. Magnification: а, b ×200; c ×400

Download (305KB)
8. Fig. 7. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 14. Developing capsule with fibroblasts, fiber structures, and capillaries around a microabscess. Magnification: а ×200; b, c ×400

Download (345KB)
9. Fig. 8. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 14. Hematoxylin and eosin stain, ×200. a: Pronounced congestion and stromal edema. b, c: Hemorrhage in cortical tissue, with hemosiderin deposition around hemorrhages and among accumulations of blood

Download (314KB)
10. Fig. 9. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 14. Hematoxylin and eosin stain. a: Granular and hydropic degeneration of tubular epithelial cells and hemosiderin deposition in the stroma. ×200. b: Hydropic degeneration and necrosis of individual tubular epithelial cells with granular casts in the tubular lumen. ×200. c: Granular and hydropic degeneration of tubular epithelial cells and hemosiderosis of the stroma. ×400

Download (311KB)
11. Fig. 10. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 28. Hematoxylin and eosin stain. Granulation tissue in the necrotic area, with scattered hemosiderin deposition. Magnification: а ×200; b, c ×400

Download (314KB)
12. Fig. 11. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 28. a, b: Substitution of necrotic tissue by loose hydropic granular tissue enriched with vessels and thin fibrils, with hemosiderin deposition scattered through the granulation tissue. Hematoxylin and eosin stain. с: Overlapping reticular fibers in the granulation tissue. Periodic acid–Schiff stain. Magnification: а ×400; b, c ×200

Download (317KB)
13. Fig. 12. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 28. ×200. a: Thin, loose collagen fibers where granulation tissue has replaced necrotic tissue. Masson stain. b, c: Encapsulation and organization of a microabscess. Hematoxylin and eosin stain

Download (339KB)
14. Fig. 13. Kidney parenchyma in the resection zone in rats in the control group on postoperative day 28. Hematoxylin and eosin stain. a: Encapsulation and penetration of a microhematoma by immature connective tissue, with resorption of blood elements. ×200. b: Granular degeneration of tubular epithelial cells. ×200. c: Tubular epithelium, with large cells with bright homogenous cytoplasm in some tubules. ×400

Download (305KB)
15. Fig. 14. Kidney parenchyma in the resection zone in rats in the α-tocopherol acetate-treated group on postoperative day 7. Hematoxylin and eosin stain, ×200. a: Necrosis of tubules under an intact stroma and hemorrhagic necrosis of a glomerulus. b, c: Necrosis of tubules under an intact stroma and glomerulus, with a neutrophil and mononuclear leukocyte infiltrate bordering the necrotic area

Download (301KB)
16. Fig. 15. Kidney parenchyma in the resection zone of in rats in the α-tocopherol acetate-treated group on postoperative day 7. Hematoxylin and eosin stain, ×200. a: Hemorrhages with initial signs of reactive inflammation and hemosiderin deposition. b: Casts in tubular lumens. c: Hydropic degeneration and necrosis of tubular epithelial cells

Download (292KB)
17. Fig. 16. Kidney parenchyma in (a, b) and above (c) the resection zone in rats in the α-tocopherol acetate-treated group on postoperative day 14. Hematoxylin and eosin stain. a: Resorption of necrotic tissues and hemosiderin deposition. ×200. b: Resorption of necrotic detritus with substitution by granulation tissue. ×400. c: Encapsulation and organization of a hematoma. ×200

Download (318KB)
18. Fig. 17. Kidney parenchyma in the resection zone in rats in the α-tocopherol acetate-treated group on postoperative day 28. Hematoxylin and eosin stain. ×200. a: Substitution of necrotic detritus with fairly mature connective tissue containing hemosiderin. b: Deposition of lime in regenerating connective tissue. c: Cellular and fiber structure of regenerating connective tissue

Download (325KB)
19. Fig. 18. Kidney parenchyma in (a, b) and above (c) the resection zone in rats of the α-tocopherol acetate-treated group on postoperative day 28. a: Collagen frame of regenerating connective tissue. Masson stain. ×200. b: Tubular epithelial lining including large cells with eosinophilic cytoplasm. Hematoxylin and eosin stain, ×400. c: Increased glycogen levels in the tubular epithelium. Periodic acid–Schiff stain, ×200

Download (316KB)

Copyright (c) 2018 Shormanov I.S., Los M.S., Shormanova N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies