脊柱X线片分析的自动化以客观评估特发性脊柱侧凸中脊柱侧凸变形的严重程度(初步报告)

封面

如何引用文章

详细

论证:尽管国外对建立一种自动测量脊柱X线Cobb角的方法进行了广泛的研究,国内的一种辅助工具,
这使能够优化过程,确定脊柱侧弯畸形的严重程度,选择有效的治疗方法仍然不存在。

目的是研究在X线影像上选择脊柱和椎骨并构建椎间盘切线的算法,以便随后对特发性脊柱侧凸患者的脊柱X线影像进行自动分析,以评估其严重程度。

材料与方法。由有资格的放射科医师绘制,并包含在用于训练神经网络300张儿童和青少年特发性脊柱侧凸数字X光片的数据集中,以基于Cobb角的值确定脊柱侧凸的程度。使用了两种方法:确定滑动窗口方法和基于神经网络的算法,其证明后者的显著优势。

结果。建立了一个计算机系统的基础,用于自动分析医学X射线图像的脊柱。一种特殊的数据训练和增加方法,以及有资格的放射科医师绘制,使得训练神经网络和实现对85%以上的X线片的正确识别Cobb角成为可能。

结论基于深度神经网络技术—脊柱识别和二维图像、Cobb角自动绘制,迈出了国内现代化创新产品的第一步。

作者简介

Grigory Lein

Scoliologic.ru Limited Liability Company

编辑信件的主要联系方式.
Email: Lein@scoliologic.ru
ORCID iD: 0000-0001-7904-8688

MD, traumatologist-orthopedist, PhD, General Director of Scoliologic.ru LLC

俄罗斯联邦, Saint Petersburg

Natalia Nechaeva

Scoliologic.ru Limited Liability Company

Email: n.nechaeva@scoliologic.ru
ORCID iD: 0000-0003-3510-9164

MD, scientific worker, radiologist

俄罗斯联邦, Saint Petersburg

Gulnar Mammadova

INPRIS Limited Liability Company

Email: mgm.gulnar@gmail.com
ORCID iD: 0000-0001-9738-9259

analyst

俄罗斯联邦, Moscow

Andrey Smirnov

INPRIS Limited Liability Company

Email: smirnov.andrey.aleksandrovich@gmail.com
ORCID iD: 0000-0002-7062-5677

Analyst

俄罗斯联邦, Moscow

Maxim Statsenko

Mail.ru Limited Liability Company

Email: maxstatsenko@gmail.com
ORCID iD: 0000-0002-6826-9116

head of the development team

俄罗斯联邦, Moscow

参考

  1. Ferguson AB. The study and treatment of scoliosis. South Med J. 1930;23(2):116-120.
  2. Сobb JR. Outline for the study of scoliosis. Instr Course Lect AAOS. 1948;5:261-275.
  3. Jentschura G. Zur pathogenese der säuglingsskoliose. Archiv für orthopädische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopädisch-chirurgischen Technik. 1956;48(5):582-603.
  4. Абальмасова Е.А. Сколиоз в рентгеновском изображении и его измерение // Ортопедия и травматология. – 1964. – № 5. – С. 49–50. [Abalmasova EA. Skolioz v rentgenovskom izobrazhenii i ego izmerenie. Ortopediya i travmatologiya. 1964;(5):49-50. (In Russ.)]
  5. Тесаков Д.К., Тесакова Д.Д. Рентгенологические методики измерения дуг сколиотической деформации позвоночника во фронтальной плоскости и их сравнительный анализ // Проблемы здоровья и экологии. – 2007. – № 3. – С. 94–103. [Tesakov DK, Tesakova DD. Roetgenological methods of scoliotic spine deformity estimation in frontal plane and their comparative analysis. Problemy zdorov’ya i ekologii. 2007;(3):94-103. (In Russ.)]
  6. SOSORT. Методические рекомендации SOSORT 2011 г. Ортопедическое и реабилитационное лечение подросткового идиопатического сколиоза. 2011. [SOSORT. Metodicheskie rekomendatsii SOSORT 2011 g. Ortopedicheskoe i reabilitatsionnoe lechenie podrostkovogo idiopaticheskogo skolioza. 2011. (In Russ.)]
  7. Ньютон П.О., О’Браен М.Ф., Шаффлбаргер Г.Л., и др. Идиопатический сколиоз. Исследовательская группа Хармса: руководство по лечению. – М.: Лаборатория знаний, 2018. – 479 с. [Newton PO, O’Brien MF, Schafflebarger GL, et al. Idiopaticheskiy skolioz. Issledovatel’skaya gruppa Kharmsa: Rukovodstvo po lecheniyu. Moscow: Laboratoriya znaniy; 2018. 479 p. (In Russ.)]
  8. Wilson MS, Stockwell J, Leedy MG. Measurement of scoliosis by orthopedic surgeons and radiologists. Aviat Space Environ Med. 1983;54(1):69-71.
  9. Tanure MC, Pinheiro AP, Oliveira AS. Reliability assessment of Cobb angle measurements using manual and digital methods. Spine J. 2010;10(9):769-774. https://doi.org/10.1016/j.spinee.2010.02.020.
  10. Suwannarat P, Wattanapan P, Wiyanad A, et al. Reliability of novice physiotherapists for measuring Cobb angle using a digital method. Hong Kong Physiother J. 2017;37:34-38. https://doi.org/10.1016/ j.hkpj.2017.01.003.
  11. Wang J, Zhang J, Xu R, et al. Measurement of scoliosis Cobb angle by end vertebra tilt angle method. J Orthop Surg Res. 2018;13(1):223. https://doi.org/10.1186/s13018-018-0928-5.
  12. Horng MH, Kuok CP, Fu MJ, et al. Cobb angle measurement of spine from X-Ray images using convolutional neural network. Comput Math Methods Med. 2019;2019:6357171. https://doi.org/10.1155/ 2019/6357171.
  13. Pan Y, Chen Q, Chen T, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur Spine J. 2019;28(12):3035-3043. https://doi.org/10.1007/s00586-019-06115-w.
  14. Safari A, Parsaei H, Zamani A, Pourabbas B. A Semi-Automatic algorithm for estimating Cobb angle. J Biomed Phys Eng. 2019;9(3):317-326. https://doi.org/10.31661/jbpe.v9i3Jun.730.
  15. Qiao J, Liu Z, Xu L, et al. Reliability analysis of a smartphone-aided measurement method for the Cobb angle of scoliosis. J Spinal Disord Tech. 2012;25(4):E88-92. https://doi.org/10.1097/BSD.0b013e3182463964.
  16. Jones JK, Krow A, Hariharan S, Weekes L. Measuring angles on digitalized radiographic images using Microsoft PowerPoint. West Indian Med J. 2008;57(1):14-19.
  17. Rigo MD, Villagrasa M, Gallo D. A specific scoliosis classification correlating with brace treatment: Description and reliability. Scoliosis. 2010;5(1):1. https://doi.org/10.1186/1748-7161-5-1.
  18. He К, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 2017. arXiv: 1703.06870.
  19. Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation. 2014. arXiv: 1411.4038.
  20. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385.
  21. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.04597.
  22. Liu W, Rabinovich A, Berg AC. ParseNet: Looking Wider to See Better. 2015. arXiv: 1506.04579.
  23. Mukherjee J, Kundu R, Chakrabarti A. Variability of Cobb angle measurement from digital X-ray image based on different de-noising techniques. Int J Biomed Eng Technol. 2014;16(2):113. https://doi.org/10.1504/ijbet. 2014.065656.
  24. Okashi OA, Du H, Al-Assam H. Automatic spine curvature estimation from X-ray images of a mouse model. Comput Methods Programs Biomed. 2017;140:175-184. https://doi.org/10.1016/j.cmpb.2016.12.010.
  25. Pinheiro AP, Coelho JC, Veiga ACP, Vrtovec T. A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images. Comput Methods Programs Biomed. 2018;161:85-92. ttps://doi.org/10.1016/j.cmpb.2018.04.015.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Lein G., Nechaeva N., Mammadova G., Smirnov A., Statsenko M., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».