Роль интранатальной травмы шейного отдела позвоночника в патогенезе идиопатического сколиоза: интеграция неврологических и биомеханических аспектов. Обзор литературы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Идиопатический сколиоз остается одним из наиболее распространенных и сложных ортопедических заболеваний у детей и подростков. Несмотря на признание роли генетических, гормональных и средовых факторов, пусковой механизм, инициирующий деформацию в раннем возрасте, остается предметом дискуссий. Проанализированы данные мировой литературы, посвященной интранатальной травме шейного отдела позвоночника, выступающей в качестве провоцирующего фактора развития идиопатического сколиоза у генетически предрасположенных пациентов. Проведен систематический анализ публикаций в базах данных PubMed, Google Scholar, eLibrary и CyberLeninka за период 2010–2024 гг., посвященных этиологии идиопатического сколиоза, с акцентом на исследования, изучающие связь осложненных родов, биомеханики шейного отдела и последующего развития деформации позвоночника. В обзоре обобщены и проанализированы современные литературные данные о потенциальной роли интранатального повреждения краниовертебрального перехода в патогенезе идиопатического сколиоза с интеграцией неврологических, биомеханических и генетических аспектов. Установлено, что механическое воздействие на шейный отдел во время родов (при тазовом предлежании, стремительных/затяжных родах, использовании акушерских пособий) может вызывать микроповреждения дуральных структур, ишемию ствола мозга и дисфункцию ретикулоспинальных путей. Это приводит к асимметрии мышечного тонуса, которая в условиях пубертатного скачка роста и генетической предрасположенности реализуется в стойкую трехплоскостную деформацию позвоночника. Предложена интегративная модель патогенетического каскада, объясняющая латентный период и последующее прогрессирование идиопатического сколиоза. Интранатальная травма шейного отдела — значимый, хотя и не единственный, триггер развития идиопатического сколиоза. Комплексный подход, включающий анализ перинатального анамнеза, ранний генетический скрининг и ультразвуковой мониторинг состояния краниовертебральной области у детей из групп риска, может стать основой для разработки стратегий первичной профилактики идиопатического сколиоза.

Об авторах

Марина Евгеньевна Виндерлих

Марийский государственный университет

Автор, ответственный за переписку.
Email: vinderlikh@yandex.ru
ORCID iD: 0000-0002-9855-548X
SPIN-код: 9943-2150

канд. мед. наук, доцент

Россия, Йошкар-Ола

Сергей Валентинович Виссарионов

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-код: 7125-4930

д-р мед. наук, профессор, чл.-корр. РАН

Россия, Санкт-Петербург

Список литературы

  1. Burwell RG, Clark EM, Dangerfield PH, et al. Adolescent idiopathic scoliosis (AIS): a multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord. 2016;11:8. doi: 10.1186/s13013-016-0063-1 EDN: ASGDBJ
  2. Takahashi Y, Kou I, Takahashi A, et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–1240. doi: 10.1038/ng.974
  3. Ogura Y, Kou I, Miura S, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 2015;97(2):337–342. doi: 10.1016/j.ajhg.2015.06.012
  4. Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45. doi: 10.1186/s13013-016-0105-8 EDN: YHWBRJ
  5. Gutmann G. Birth injury of the cervical spine as the cause for the development of scoliosis. Manuelle Medizin. 1987;25:5–9.
  6. Glagolev NV. Scoliotic spine deformity in children and adolescents associated with the craniovertebral junction pathology. Burdenko’s Journal of Neurosurgery. 2014;78(6):80–84. doi: 10.17116/neiro201478680-84 EDN: TLNXDP
  7. Chu WC, Man GC, Lam WW, et al. A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(15):1667–1674. doi: 10.1097/BRS.0b013e318074d539
  8. Royo-Salvador MB, Fiallos-Rivera MV, Villavicencio P. Neuro-cranio-vertebral syndrome related to coccygeal dislocation: a preliminary study. World Neurosurg X. 2023;21:100252. doi: 10.1016/j.wnsx.2023.100252
  9. Mao G, Kopparapu S, Jin Y, et al. Craniocervical instability in patients with Ehlers-Danlos syndrome: controversies in diagnosis and management. Spine J. 2022;22(12):1944–1952. doi: 10.1016/j.spinee.2022.08.008 EDN: KRFQWV
  10. Vorotyntceva NS, Nikulshina-Zhikina LG, Kurtceva ES. Radiodiagnostics of perinatal neck injuries in newborns and preschool children. Humans and Their Health. 2015;(4):13–19. EDN: VJKGBH
  11. Lin CC, Lu TW, Wang TM, et al. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. J Biomech. 2014;47(13):3310–3317. doi: 10.1016/j.jbiomech.2014.08.014
  12. Michel C, Dijanic C, Abdelmalek G, et al. Upper cervical spine instability systematic review: a bibliometric analysis of the 100 most influential publications. J Spine Surg. 2022;8(2):266–275. doi: 10.21037/jss-21-132 EDN: YXWYWY
  13. Chu WC, Lam WW, Chan YL, et al. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine (Phila Pa 1976). 2006;31(1):E19–E25. doi: 10.1097/01.brs.0000193892.20764.51
  14. Boere-Boonekamp MM, van der Linden-Kuiper LT. Positional preference: prevalence in infants and follow-up after two years. Pediatrics. 2001;107(2):339–343. doi: 10.1542/peds.107.2.339 EDN: DLMPTJ
  15. Hausmann ON, Böni T, Pfirrmann CW, et al. Preoperative radiological and electrophysiological evaluation in 100 adolescent idiopathic scoliosis patients. Eur Spine J. 2003;12(5):501–506. doi: 10.1007/s00586-003-0568-1 EDN: ESSCAF
  16. Lu Y, Chen C, Kallakuri S, et al. Neurophysiological and biomechanical characterization of goat cervical facet joint capsules. J Orthop Res. 2005;23(4):779–787. doi: 10.1016/j.orthres.2005.01.002
  17. Cronin DS. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J Mech Behav Biomed Mater. 2014;33:55–66. doi: 10.1016/j.jmbbm.2013.01.006
  18. Biedermann H. Manual therapy in children: proposals for an etiologic model. J Manipulative Physiol Ther. 2005;28(3):e1–e15. doi: 10.1016/j.jmpt.2005.02.011
  19. Kudryavtseva NA, Lobanova LV. Specific features of cerebral hemodynamics in children under school age with natal injury consequences depending on the presence and level of cervical spine involvement. Genius of Orthopedics. 2010;(3):48–53. EDN: MTYNOR
  20. Frymann V. Relation of disturbances of craniosacral mechanisms to symptomatology of the newborn: study of 1,250 infants. J Am Osteopath Assoc. 1966;65(10):1059–1075.
  21. Biedermann H. Kinematic imbalances due to suboccipital strain in newborns. J Manual Med. 1992;6(5):151–156.
  22. Fotter R, Sorantin E, Schneider U, et al. Ultrasound diagnosis of birth-related spinal cord trauma: neonatal diagnosis and follow-up and correlation with MRI. Pediatr Radiol. 1994;24(4):241–244. doi: 10.1007/BF02015444 EDN: HHSTSN
  23. Janusz P, Tokłowicz M, Andrusiewicz M, et al. Association of LBX1 gene methylation level with disease severity in patients with idiopathic scoliosis: study on deep paravertebral muscles. Genes. 2022;13(9):1556. doi: 10.3390/genes13091556 EDN: EXSPAQ
  24. Henderson FC, Austin C, Benzel E, et al. Neurological and spinal manifestations of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):195–211. doi: 10.1002/ajmg.c.31549
  25. Mamonova EY. Clinical and hemodynamic disorders in adolescents with vertebrogenic syndrome of the vertebral artery. Spine Surgery. 2006;(3):68–70. (In Russ.)
  26. Koura G, Elshiwi AMF, Reddy RS, et al. Proprioceptive deficits and postural instability in adolescent idiopathic scoliosis: a comparative study of balance control and key predictors. Front Pediatr. 2025;13:1595125. doi: 10.3389/fped.2025.1595125
  27. Ng PTT, Claus A, Izatt MT, et al. Is spinal neuromuscular function asymmetrical in adolescents with idiopathic scoliosis compared to those without scoliosis?: a narrative review of surface EMG studies. J Electromyogr Kinesiol. 2022;63:102640. doi: 10.1016/j.jelekin.2022.102640 EDN: YYMHQE
  28. Stokes IA. Mechanical modulation of spinal growth and progression of adolescent scoliosis. Stud Health Technol Inform. 2008;135:75–83.
  29. Liu C, Li P, Ao X, et al. Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling. Exp Mol Med. 2022;54(9):1549–1562. doi: 10.1038/s12276-022-00849-2 EDN: VUBFRX
  30. Bundscherer F, Freundl K, Lindner R, Richter K. Ultrasound diagnosis of birth trauma lesion of the cervical spine. Monatsschr Kinderheilkd. 1993;141(7):581–583. (In German.)
  31. Wang MY, Hoh DJ, Leary SP, et al. High rates of neurological improvement following severe traumatic pediatric spinal cord injury. Spine. 2004;29(13):1493–1497. doi: 10.1097/01.brs.0000129026.03194.0f
  32. Cheng JC, Au AW. Infantile torticollis: a review of 624 cases. J Pediatr Orthop. 1994;14(6):802–808.
  33. Zharova EY, Winderlich ME. Neurological status in children with scoliotic spinal deformity. Modern Science: Current Problems of Theory and Practice. Series: Natural and Technical Sciences. 2018;(5):149–153. EDN: XWASUP
  34. Horne JP, Flannery R, Usman S. Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician. 2014;89(3):193–198.
  35. Porter RW. Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine (Phila Pa 1976). 2000;25(11):1360–1366. doi: 10.1097/00007632-200006010-00007
  36. Zheng S, Zhou H, Gao B, et al. Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model. Exp Mol Med. 2018;50(11):1–11. doi: 10.1038/s12276-018-0161-7
  37. Ito I, Hanyu A, Wayama M, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010;285(19):14747–14755. doi: 10.1074/jbc.M109.093039
  38. Nowak R, Kwiecien M, Tkacz M, et al. Transforming growth factor-beta (TGF-β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. Biomed Res Int. 2014;2014:594287. doi: 10.1155/2014/594287 EDN: USWHQB
  39. Gómez Cristancho DC, Jovel Trujillo G, Manrique IF, et al. Neurological mechanisms involved in idiopathic scoliosis. Systematic review of the literature. Neurocirugia. 2023;34(1):1–11. doi: 10.1016/j.neucie.2022.02.009 EDN: WCURPT
  40. Paramento M, Passarotto E, Maccarone MC, et al. Neurophysiological, balance and motion evidence in adolescent idiopathic scoliosis: a systematic review. PLoS One. 2024;19(5):e0303086. doi: 10.1371/journal.pone.0303086 EDN: NMNXNN
  41. Kong Y, Shi L, Hui SC, et al. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: a pilot study using diffusion tensor imaging. Am J Neuroradiol. 2014;35(8):1621–1627. doi: 10.3174/ajnr.A3912
  42. Vongsirinavarat M, Kao-Ngampanich P, Sinsurin K. Electromyography of paraspinal muscles during self-corrective positions in adolescent idiopathic scoliosis. J Back Musculoskelet Rehabil. 2024;37(1):165–173. doi: 10.3233/BMR-230055 EDN: KPJSHJ
  43. Marin L, Kawczyński A, Carnevale Pellino V, et al. Displacement of centre of pressure during rehabilitation exercise in adolescent idiopathic scoliosis patients. J Clin Med. 2021;10(13):2837. doi: 10.3390/jcm10132837 EDN: RFITRT
  44. Hawasli AH, Hullar TE, Dorward IG. Idiopathic scoliosis and the vestibular system. Eur Spine J. 2015;24(2):227–233. doi: 10.1007/s00586-014-3701-4 EDN: AFLXLC
  45. Xu J, Chen M, Wang X, et al. Biomechanical changes in adolescent idiopathic scoliosis during walking: a protocol for systematic review and meta-analysis. Medicine. 2023;102(49):e36528. doi: 10.1097/MD.0000000000036528
  46. Jia S, Lin L, Yang H, et al. The influence of the rib cage on the static and dynamic stability responses of the scoliotic spine. Sci Rep. 2020;10(1):16916. doi: 10.1038/s41598-020-73881-9 EDN: WSMZEK
  47. Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33(26):2898–2908. doi: 10.1097/BRS.0b013e3181891751
  48. Burwell RG, Dangerfield PH, Freeman BJ. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis. Stud Health Technol Inform. 2008;140:208–217.
  49. Fan Y, To MK, Yeung EHK, et al. Electromyographic discrepancy in paravertebral muscle activity predicts early curve progression of untreated adolescent idiopathic scoliosis. Asian Spine J. 2023;17(5):922–932. doi: 10.31616/asj.2023.0199 EDN: HWUQZH
  50. Cheung J, Halbertsma JP, Veldhuizen AG, et al. A preliminary study on electromyographic analysis of the paraspinal musculature in idiopathic scoliosis. Eur Spine J. 2005;14(2):130–137. doi: 10.1007/s00586-004-0780-7 EDN: FYCWBX
  51. Zabjek KF, Leroux MA, Coillard C, et al. Evaluation of segmental postural characteristics during quiet standing in control and idiopathic scoliosis patients. Clin Biomech. 2005;20(5):483–490. doi: 10.1016/j.clinbiomech.2005.01.003
  52. Gum JL, Asher MA, Burton DC, et al. Transverse plane pelvic rotation in adolescent idiopathic scoliosis: primary or compensatory? Eur Spine J. 2007;16(10):1579–1586. doi: 10.1007/s00586-007-0400-4 EDN: UEQCEP
  53. Akalu Y, Frazer AK, Howatson G, et al. Identifying the role of the reticulospinal tract for strength and motor recovery: a scoping review of nonhuman and human studies. Physiol Rep. 2023;11(14):e15765. doi: 10.14814/phy2.15765 EDN: TKVZLC
  54. Grivas TB, Savvidou O, Binos S, et al. Morphometric characteristics of the thoracοlumbar and lumbar vertebrae in the Greek population: a computed tomography-based study on 900 vertebrae-”Hellenic Spine Society (HSS) 2017 Award Winner”. Scoliosis Spinal Disord. 2019;14:2. doi: 10.1186/s13013-019-0176 EDN: CHWMHN
  55. Gould SL, Cristofolini L, Davico G, et al. Computational modelling of the scoliotic spine: a literature review. Int J Numer Method Biomed Eng. 2021;37(10):e3503. doi: 10.1002/cnm.3503 EDN: MNJYDB
  56. Stokes IA, Burwell RG, Dangerfield PH, et al. Biomechanical spinal growth modulation and progressive adolescent scoliosis-a test of the ‘vicious cycle’ pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE. Scoliosis. 2006;1:16. doi: 10.1186/1748-7161-1-16
  57. Donzelli S, Poma S, Balzarini L, et al. State of the art of current 3-D scoliosis classifications: a systematic review from a clinical perspective. J Neuroeng Rehabil. 2015;12:91. doi: 10.1186/s12984-015-0083-8 EDN: LXMCXB
  58. Du Q, Zhou X, Negrini S, et al. Scoliosis epidemiology is not similar all over the world: a study from a scoliosis school screening on Chongming Island (China). BMC Musculoskelet Disord. 2016;17:303. doi: 10.1186/s12891-016-1140-6 EDN: VJGOCX
  59. Moreau A, Wang DS, Forget S, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29(16):1772–1781. doi: 10.1097/01.brs.0000134567.52303.1a
  60. Wu JZ, Wu WH, He LJ, et al. Effect of melatonin and calmodulin in an idiopathic scoliosis model. Biomed Res Int. 2016;2016:8460291. doi: 10.1155/2016/8460291
  61. Wang Q, Wang C, Hu W, et al. Disordered leptin and ghrelin bioactivity in adolescent idiopathic scoliosis (AIS): a systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):502. doi: 10.1186/s13018-020-01988-w EDN: CXAOXA
  62. Wang YJ, Yu HG, Zhou ZH, et al. Leptin receptor metabolism disorder in primary chondrocytes from adolescent idiopathic scoliosis girls. Int J Mol Sci. 2016;17(7):1160. doi: 10.3390/ijms17071160
  63. Alves ÁLL, Nozaki AM, Polido CBA, et al. Breech birth care: Number 1 – 2024. Rev Bras Ginecol Obstet. 2024;46:e-rbgofps1. doi: 10.61622/rbgo/2024FPS01
  64. Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34(4):535–549. doi: 10.1016/s0896-6273(02)00690-6
  65. Xu JF, Yang GH, Pan XH, et al. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics. 2015;105(2):101–107. doi: 10.1016/j.ygeno.2014.11.009 EDN: YBAGSH

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).