神经源性异位骨化。文献综述。第一部分
- 作者: Khodorovskaya A.M.1, Novikov V.A.1, Umnov V.V.1, Zvozil A.V.1, Melchenko E.V.1, Umnov D.V.1, Zharkov D.S.1, Barlova O.V.1, Krasulnikova E.A.2, Zakharov F.A.2
-
隶属关系:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after I.I. Mechnikov
- 期: 卷 11, 编号 3 (2023)
- 页面: 393-404
- 栏目: Scientific reviews
- URL: https://journals.rcsi.science/turner/article/view/148241
- DOI: https://doi.org/10.17816/PTORS453731
- ID: 148241
如何引用文章
详细
论证。异位骨化是指在人体软组织中形成骨组织。异位骨化的另一种形式是神经源性骨化,它是由于各种原因造成的严重脑损伤或脊髓损伤而发生的。神经源性异位骨化是大关节旁软组织中分化骨形成的一个复杂的多因素过程。异位骨化导致持续性挛缩和强直的形成,造成严重残疾,并使这些患者的康复变得复杂。
目的。本研究旨在分析有关神经源性异位骨化各个方面的出版物。
材料和方法。综述的第一部分分析了有关神经源性异位骨化的流行病学、形成风险因素、发病机制、临床表现和实验室诊断的文献。数据在科学文献数据库PubMed、Google Scholar、Cochrane Library、Crossref和eLibrary中进行搜索,无语言限制。搜索深度为30年。在撰写文章的过程中采用了信息分析和综合的方法。
结果。本文介绍了有关中枢神经系统病变患者异位骨化问题的现代文献资料。内容涉及这一病理过程的病因、风险因素、发病机制、临床表现和实验室诊断等当前问题。
结论。了解神经源性异位骨化发病的风险因素,并结合现代发病机理的相关知识加以预防,可能有助于降低严重中枢神经系统损伤患者异位骨化形成的频率。
作者简介
Alina M. Khodorovskaya
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN 代码: 3348-8038
Researcher ID: HLH-5742-2023
MD, Research Associate
俄罗斯联邦, Saint PetersburgVladimir A. Novikov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN 代码: 2773-1027
Scopus 作者 ID: 57193252858
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgValery V. Umnov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN 代码: 6824-5853
MD, PhD, Dr. Sci. (Med.)
俄罗斯联邦, Saint PetersburgAlexey V. Zvozil
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: zvozil@mail.ru
ORCID iD: 0000-0002-5452-266X
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgEvgenii V. Melchenko
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN 代码: 1552-8550
Scopus 作者 ID: 55022869800
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgDmitriy V. Umnov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN 代码: 1376-7998
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgDmitriy S. Zharkov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: striker5621@gmail.com
ORCID iD: 0000-0002-8027-1593
MD, orthopedic and trauma surgeon
俄罗斯联邦, Saint PetersburgOlga V. Barlova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: barlovaolga@gmail.com
ORCID iD: 0000-0002-0184-135X
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgElizaveta A. Krasulnikova
North-Western State Medical University named after I.I. Mechnikov
Email: Ikrasulnikova63@mail.ru
3rd year student
俄罗斯联邦, Saint PetersburgFedor A. Zakharov
North-Western State Medical University named after I.I. Mechnikov
编辑信件的主要联系方式.
Email: zakfedya@yandex.ru
3rd year student
俄罗斯联邦, Saint Petersburg参考
- Zaytsev AY, Bryukhovetsky AS. Neuroregenerative therapy of spinal cord trauma: role and perspectives of stem cells transplantation. Genes & Cells. 2007;2(1):36–44. (In Russ.)
- Sullivan MP, Torres SJ, Mehta S, et al. Heterotopic ossification after central nervous system trauma: a current review. Bone Joint Res. 2013;2(3):51–57. doi: 10.1302/2046-3758.23.2000152
- Meyers C, Lisiecki J, Miller S, et al. Heterotopic ossification: a comprehensive review. JBMR Plus. 2019;3(4). doi: 10.1002/jbm4.10172
- Deev RV, Plaksa IL, Baranich AV, et al. Osteogenesis in epitelial tumors on the example of a pilomatricomas. Genes & Cells. 2020;15(1):60–65. (In Russ.) doi: 10.23868/202003008
- Mohler ER, Gannon F, Reynolds C, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–1528. doi: 10.1161/01.cir.103.11.1522
- Genêt F, Jourdan C, Schnitzler A, et al. Troublesome heterotopic ossification after central nervous system damage: a survey of 570 surgeries. PLoS One. 2011;6(1). doi: 10.1371/journal.pone.0016632
- Garland DE. Clinical observations on fractures and heterotopic ossification in the spinal cord and traumatic brain injured populations. Clin Orthop Rel Res. 1988;233:86–101.
- Brady RD, Shultz SR, McDonald SJ, et al. Neurological heterotopic ossification: current understanding and future directions. Bone. 2018;109:35–42. doi: 10.1016/j.bone.2017.05.015
- Potter BK, Burns TC, Lacap AP, et al. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am. 2007;89:476–486. doi: 10.2106/JBJS.F.00412
- Forsberg JA, Pepek JM, Wagner S, et al. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J Bone Joint Surg Am. 2009;91(5):1084–1091. doi: 10.2106/JBJS.H.00792
- Reznik JE, Biros E, Marshall R, et al. Prevalence and risk-factors of neurogenic heterotopic ossification in traumatic spinal cord and traumatic brain injured patients admitted to specialised units in Australia. J Musculoskelet Neuronal Interact. 2014;14(1):19–28.
- Cipriano C, Pill SG, Rosenstock J, et al. Radiation therapy for preventing recurrence of neurogenic heterotopic ossification. Orthopedics. 2009;32(9). doi: 10.3928/01477447-20090728-33
- Estraneo A, Pascarella A, Masotta O, et al. Multi-center observational study on occurrence and related clinical factors of neurogenic heterotopic ossification in patients with disorders of consciousness. Brain Inj. 2021;35(5):530–535. doi: 10.1080/02699052.2021.1893384
- Simonsen LL, Sonne-Holm S, Krasheninnikoff M, et al. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors. Injury. 2007;38(10):1146–1150. doi: 10.1016/j.injury.2007.03.019
- Ranganathan K, Loder S, Agarwal S, et al. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97(13):1101–1111. doi: 10.2106/JBJS.N.01056
- Kluger G, Kochs A, Holthausen H. Heterotopic ossification in childhood and adolescence. J Child Neurology. 2000;15(6):406–413. doi: 10.1177/088307380001500610
- Hurvitz EA, Mandac BR, Davidoff G, et al. Risk factors for heterotopic ossification in children and adolescents with severe traumatic brain injury. Arch Phys Med Rehabil. 1992;73(5):459–462.
- Citak M, Suero EM, Backhaus M, et al. Risk factors for heterotopic ossification in patients with spinal cord injury: a case-control study of 264 patients. Spine. 2012;37(23):1953–1957. doi: 10.1097/BRS.0b013e31825ee81b
- Van Kuijk AA, Geurts ACH, van Kuppevelt HJM. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord. 2002;40:313–326. doi: 10.1038/sj.sc.3101309
- Yolcu YU, Wahood W, Goyal A, et al. Factors associated with higher rates of heterotopic ossification after spinal cord injury: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;195. doi: 10.1016/j.clineuro.2020.105821
- Van Kampen PJ, Martina JD, Vos PE, et al. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury. J Head Trauma Rehabil. 2011;26(5):384–391. doi: 10.1097/HTR.0b013e3181f78a59
- Krauss H, Maier D, Bühren V, et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients. Spinal Cord. 2015;53(5):345–348. doi: 10.1038/sc.2014.186
- Rawat N, Chugh S, Zachariah K, et al. Incidence and characteristics of heterotopic ossification after spinal cord injury: a single institution study in India. Spinal Cord Ser Cases. 2019;5:72. doi: 10.1038/s41394-019-0216-6
- Lal S, Hamilton BB, Heinemann A, et al. Risk factors for heterotopic ossification in spinal cord injury. Arch Phys Med Rehabil. 1989;70(5):387–390.
- Thefenne L, de Brier G, Leclerc T, et al. Two new risk factors for heterotopic ossification development after severe burns. PLoS One. 2017;12(8). doi: 10.1371/journal.pone.0182303
- Orchard GR, Paratz JD, Blot S, et al. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification: a retrospective analysis. J Burn Care Res. 2015;36(4):465–470. doi: 10.1097/BCR.0000000000000123
- Pulik Ł, Mierzejewski B, Ciemerych MA, et al. The survey of cells responsible for heterotopic ossification development in skeletal muscles-human and mouse models. Cells. 2020;9(6):1324. doi: 10.3390/cells9061324
- McCarthy EF, Sundaram M. Heterotopic ossification: a review. Skeletal Radiol. 2005;34(10):609–619. doi: 10.1007/s00256-005
- Foley KL, Hebela N, Keenan MA, et al. Histopathology of periarticular non-hereditary heterotopic ossification. Bone. 2018;109:65–70. doi: 10.1016/j.bone.2017.12.006
- Brady RD, Grills BL, Church JE, et al. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep. 2016;6. doi: 10.1038/srep34491
- Wang L, Yao X, Xiao L, et. al. The effects of spinal cord injury on bone healing in patients with femoral fractures. J Spinal Cord Med. 2014;37(4):414–419. doi: 10.1179/2045772313Y.0000000155
- Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury – a clinical perspective. Acta Neurologica Scandinavica. 2022;146(4):389–399. doi: 10.1111/ane.13620
- Gugala Z, Olmsted-Davis EA, Xiong Y, et al. Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol. 2018;9:408. doi: 10.3389/fneur.2018.00408
- Wong KR, Mychasiuk R, O’Brien TJ, et al. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res. 2020;8(1):42. doi: 10.1038/s41413-020-00119-9
- Gautschi OP, Toffoli AM, Joesbury KA, et al. Osteoinductive effect of cerebrospinal fluid from brain-injured patients. J Neurotrauma. 2007;24(1):154–162. doi: 10.1089/neu.2006.0166
- Genêt F, Kulina I, Vaquette C, et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol. 2015;236(2):229–240. doi: 10.1002/path.4519
- Alexander KA, Tseng H, Salga M, et al. When the nervous system turns skeletal muscles into bones: how to solve the conundrum of neurogenic heterotopic ossification. Curr Osteoporos Rep. 2020;18(6):666–676. doi: 10.1007/s11914-020-00636-w
- Bryden DW, Tilghman JI, Hinds SR. Blast-related traumatic brain injury: current concepts and research considerations. J Exp Neurosci. 2019;13. doi: 10.1177/1179069519872213
- Cunha DA, Camargos S, Passos VMA, et al. Heterotopic ossification after stroke: clinical profile and severity of ossification. J Stroke Cerebrovasc Dis. 2019;28(2):513–520. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.032
- Mezghani S, Salga M, Tordjman M, et al. Heterotopic ossification and COVID 19: imaging analysis of ten consecutive cases. Eur J Radiol. 2022;152. doi: 10.1016/j.ejrad.2022.110336
- Meyer C, Haustrate MA, Nisolle JF, et al. Heterotopic ossification in COVID-19: a series of 4 cases. Ann Phys Rehabil Med. 2020;63(6):565–567. doi: 10.1016/j.rehab.2020.09.010
- Huang Y, Wang X, Zhou D, et al. Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med. 2021;6(1):70. doi: 10.1038/s41536-021-00178-4
- Lazard ZW, Olmsted-Davis EA, Salisbury EA, et al. Osteoblasts have a neural origin in heterotopic ossification. Clin Orthop Relat Res. 2015;9(473):2790–2806. doi: 10.1007/s11999-015-4323-9
- Olmsted-Davis EA, Salisbury EA, Hoang D, et al. Progenitors in peripheral nerves launch heterotopic ossification. Stem Cells Transl Med. 2017;6(4):1109–1119. doi: 10.1002/sctm.16-0347
- Girard D, Torossian F, Oberlin E, et al. Neurogenic heterotopic ossifications recapitulate hematopoietic stem cell niche development within an adult osteogenic muscle environment. Front Cell Dev Biol. 2021;9. doi: 10.3389/fcell.2021.611842
- Medici D, Shore EM, Lounev VY, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16(12):1400–1406. doi: 10.1038/nm.2252
- Agarwal S, Loder S, Cholok D, et al. Local and circulating endothelial cells undergo Endothelial to Mesenchymal Transition (EndMT) in response to musculoskeletal injury. Sci Rep. 2016;6. doi: 10.1038/srep32514
- Gareev IF, Beylerli OA, Vakhitov AK. Heterotopic ossification after central nervous system injuries: understanding of pathogenesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;25(3–4):119–124. (In Russ.) doi: 10.17116/vto201803-041119
- Montecino M, Stein G, Stein J, et al. Multiple levels of epigenetic control for bone biology and pathology. Bone. 2015;(81):733–738. doi: 10.1016/j.bone.2015.03.013
- Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149:313–323. doi: 10.1007/s00418-018-1640-6
- Lee KS, Hong SH, Bae SC. Both the smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21(47):7156–7163. doi: 10.1038/sj.onc.1205937
- Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4(1):1–21. doi: 10.1038/boneres.2016.9
- Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3(1):1–20. doi: 10.1038/boneres.2015.5
- Kang JS, Alliston T, Delston R, et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. Embo J. 2005;24(14):2543–2555. doi: 10.1038/sj.emboj.7600729
- Hino K, Horigome K, Nishio M. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest. 2017;127(9):3339–3352. doi: 10.1172/JCI93521
- Agarwal S, Loder S, Brownley C, et al. Inhibition of Hif1 alpha prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci. 2016;113(3):E338–E347. doi: 10.1073/pnas.1515397113
- Peterson JR, De La Rosa S, Sun H, et al. Burn injury enhances bone formation in heterotopic ossification model. Ann Surg. 2014;259(5):993–998. doi: 10.1097/SLA.0b013e318291da85
- Croes M, Kruyt MC, Boot W, et al. The role of bacterial stimuli in inflammation-driven bone formation. Eur Cells Mater. 2019;37:402–419. doi: 10.22203/eCM.v037a24
- Ranganathan K, Peterson J, Agarwal S, et al. Role of gender in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. Plast Reconstr Surg. 2015;135(6):1631–1641. doi: 10.1097/PRS.0000000000001266
- Xu Y, Huang M, He W, et al. Heterotopic ossification: clinical features, basic researches, and mechanical stimulations. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.770931
- Ebinger T, Roesch M, Kiefer H, et al. Influence of etiology in heterotopic bone formation of the hip. J Trauma. 2000;48(6):1058–1062. doi: 10.1097/00005373-200006000-00010
- Ko HY. Neurogenic heterotopic ossification in spinal cord injuries. In: Management and Rehabilitation of Spinal Cord Injuries. Singapore: Springer; 2020. P. 691–704. doi: 10.1007/978-981-19-0228-4_35
- Wittenberg RH, Peschke U, Bötel U. Heterotopic ossification after spinal cord injury: epidemiology and risk factors. J Bone Joint Surg Br. 1992;74(2):215–218. doi: 10.1302/0301-620X.74B2.1544955
- Green D. Medical management of long-term disability. Boston: Butterworth-Heinemann, 1996.
- Mujtaba B, Taher A, Fiala MJ, et al. Heterotopic ossification: radiological and pathological review. Radiol Oncol. 2019;53(3):275. doi: 10.2478/raon-2019-0039
- Wilkinson JM, Stockley I, Hamer AJ, et al. Biochemical markers of bone turnover and development of heterotopic ossification after total hip arthroplasty. J Orthop Res. 2003;21(3):529–534. doi: 10.1016/S0736-0266(02)00236-X
- Povoroznyuk V, Bystrytska M, Balatska N. Early diagnostic algorithm in heterotopic ossification in patients with spine and spinal cord injury. Int Neurol J. 2017;3:89–94. doi: 10.22141/2224-0713.5.91.2017.110861
- Pulik Ł, Mierzejewski B, Sibilska A, et al. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther. 2022;13(1):523. doi: 10.1186/s13287-022-03213-3
- Edsberg LE, Crowgey EL, Osborn PM, et al. A survey of proteomic biomarkers for heterotopic ossification in blood serum. J Orthop Surg Res. 2017;12(1):1–13. doi: 10.1186/s13018-017-0567-2
补充文件
