Surgical treatment of children with extensive bone defects (Literature review)
- Authors: Shabunin A.S.1,2, Asadulaev M.S.1, Vissarionov S.V.1, Fedyuk A.M.1,3, Rybinskikh T.S.3, Makarov A.Y.3, Pushkarev D.A.3, Sogoyan M.V.1, Maevskaia E.N.2, Fomina N.B.1
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Peter the Great St. Petersburg Polytechnic University
- St. Petersburg State Pediatric Medical University
- Issue: Vol 9, No 3 (2021)
- Pages: 353-366
- Section: Review
- URL: https://journals.rcsi.science/turner/article/view/65071
- DOI: https://doi.org/10.17816/PTORS65071
- ID: 65071
Cite item
Abstract
BACKGROUND: Reconstruction of extensive defects to bone tissue is one of the important problems of orthopedics and traumatology. Especially in acuteis, the problem is associated with the restoration of bone tissue in conditions of its deficiency in pediatric patients.
AIM: The aim of the study is to analyze modern methods of surgical treatment in children with extensive bone tissue injuries based on the published literature.
MATERIALS AND METHODS: Our report presents a review of the literature of methods of surgical treatment of extensive bone defects. The literature search was carried out in several databases such as PubMed, ScienceDirect, E-library, GoogleScholar for the period from 2005 to 2020, using the keywords given below. As a result of the search, 105 foreign and 37 domestic sources were found. After exclusion, 56 articles were analyzed, all presented works were published in the last 15 years.
RESULTS: The gold standard for replacing bone defects is still the use of autografts, including the use of technologies on a vascular pedicle. Various types of xenografts and allografts of bone tissue are increasingly being replaced by various kinds of synthetic implants.
CONCLUSIONS: To date, there is no single generally accepted standard for the surgical treatment of extensive bone defects. The option of surgical treatment of extensive bone tissue defects using tissue-engineered bone implants with axial blood supply seems to be extremely interesting and promising.
Full Text
##article.viewOnOriginalSite##About the authors
Anton S. Shabunin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great St. Petersburg Polytechnic University
Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN-code: 1260-5644
Scopus Author ID: 57191623923
Research Associate
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603; Saint PetersburgMarat S. Asadulaev
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996
Scopus Author ID: 0000-0002-1768-2402
MD, PhD student
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Sergei V. Vissarionov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
Scopus Author ID: 6504128319
MD, PhD, D.Sc., Professor, Corresponding Member of RAS
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Andrej M. Fedyuk
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; St. Petersburg State Pediatric Medical University
Email: andrej.fedyuk@gmail.com
ORCID iD: 0000-0002-2378-2813
SPIN-code: 3477-0908
5th year student
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603; Saint PetersburgTimofey S. Rybinskikh
St. Petersburg State Pediatric Medical University
Email: timofey1999r@gmail.com
ORCID iD: 0000-0002-4180-5353
SPIN-code: 7739-4321
5th year student
Russian Federation, Saint PetersburgAleksandr Y. Makarov
St. Petersburg State Pediatric Medical University
Email: makarov.alexandr97@mail.ru
ORCID iD: 0000-0002-1546-8517
SPIN-code: 1039-1096
5th year student
Russian Federation, Saint PetersburgDaniil A. Pushkarev
St. Petersburg State Pediatric Medical University
Email: dan2402@mail.ru
ORCID iD: 0000-0003-1531-7310
4th year student
Russian Federation, Saint PetersburgMarina V. Sogoyan
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: sogoyanmarina@mail.ru
ORCID iD: 0000-0001-5723-8851
SPIN-code: 2856-3854
MD, Research Associate
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Ekaterina N. Maevskaia
Peter the Great St. Petersburg Polytechnic University
Email: ma.eka@yandex.ru
ORCID iD: 0000-0002-9316-7197
Scopus Author ID: 57203990196
MD, PhD student
Russian Federation, Saint PetersburgNatalya B. Fomina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: natal.fomi@gmail.com
ORCID iD: 0000-0001-6779-9740
Research Associate
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603References
- Bogosyan AB, Musihina IV, Tenilin NA, et al. Surgical treatment of children with locomotor apparatus pathology. Meditsinskii al’manakh. 2010;(2):201–204.
- Bazarov NI, Narzuloev VA, Usmonov HS, Kurbanov DM. Some aspects of bone autotransplantation during osteoneoplasms and tumourliked processes. Vestnik Avitsenny. 2009;(41). doi: 10.25005/2074-0581-2009-11-4-34-40
- Roddy E, DeBaun MR, Daoud-Gray A, et al. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018;28(3):351–362. doi: 10.1007/s00590-017-2063-0
- Ananeva ASh, Baraeva LM, Bykov IM, et al. Modeling of bone injuries in animal experiments. Innovatsionnaya meditsina Kubani. 2021;(1):47–55. doi: 10.35401/2500-0268-2021-21-1-47-55
- Khalifeh JM, Zohny Z, MacEwan M, et al. Electrical stimulation and bone healing: A review of current technology and clinical applications. IEEE Rev Biomed Eng. 2018;11:217–232. doi: 10.1109/RBME.2018.2799189
- Podgaiskii VN, Ladut’ko DJu, Mechkovskij SJu. Autotransplantatsiya vaskulyarizovannykh kostnykh loskutov kak metod lecheniya defektov kostei razlichnoi etiologii. Khirurgiya. Vostochnaya Evropa. 2012;(2)102–113.
- Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86.
- Bracey DN, Cignetti NE, Jinnah AH, et al. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single-center case series. Xenotransplantation. 2020;27(5):e12600. doi: 10.1111/xen.12600
- Kubiak CA, Etra JW, Brandacher G, et al. Prosthetic rehabilitation and vascularized composite allotransplantation following upper limb loss. Plast Reconstr Surg. 2019;143(6):1688–1701. doi: 10.1097/PRS.0000000000005638
- Vissarionov SV, Asadulaev MS, Shabunin AS, et al. Experimental evaluation of the efficiency of chitosan matrix esunderconditions of modeling of bone defect in vivo (preliminary message). Ortopediya, travmatologiya i vosstanovitel’naya khirurgiya detskogo vozrasta. 2020;8(1):53–62. doi: 10.17816/PTORS16480
- Frosch KH, Drengk A, Krause P, et al. Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials. 2006;27(12):2542–2549. doi: 10.1016/j.biomaterials.2005.11.034
- Clem WC, Chowdhury S, Catledge SA, et al. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials. 2008;29(24–25):3461–3468. doi: 10.1016/j.biomaterials.2008.04.045
- Dong QS, Shang HT, Wu W, et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model. Mater Sci Eng C Mater Biol Appl. 2012;32(6):1536–1541. doi: 10.1016/j.msec.2012.04.039
- Kneser U, Polykandriotis E, Ohnolz J, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006;12(7):1721–1731. doi: 10.1089/ten.2006.12.1721
- Ma D, Ren L, Cao Z, et al. Prefabrication of axially vascularized bone by combining -tricalciumphosphate, arteriovenous loop, and cell sheet technique. Tissue Eng Regen Med. 2016;13(5):579–584. doi: 10.1007/s13770-016-9095-0
- Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227–2236. doi: 10.2106/JBJS.J.01513
- Leonova SN, Danilov DG, Rekhov AV. Primenenie kostnoi autotransplantatsii pri khronicheskom osteomielite. Acta Biomedica Scientifica. 2007:(5):125–126.
- Azi ML, Aprato A, Santi I, et al. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2016;17(1):465. doi: 10.1186/s12891-016-1312-4
- Capanna R, Campanacci DA, Belot N, et al. A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthop Clin North Am. 2007;38(1):51-vi. doi: 10.1016/j.ocl.2006.10.008
- Estrella EP, Wang EH. A comparison of vascularized free fibular flaps and nonvascularized fibular grafts for reconstruction of long bone defects after tumor resection. J Reconstr Microsurg. 2017;33(3):194–205. doi: 10.1055/s-0036-1594299
- Izadpanah A, Moran SL. Pediatric microsurgery: A global overview. Clin Plast Surg. 2020;47(4):561–572. doi: 10.1016/j.cps.2020.06.008
- Yildirim S, Calikapan GT, Akoz T. Reconstructive microsurgery in pediatric population – a series of 25 patients. Microsurgery. 2008;28(2):99–107. doi: 10.1002/micr.20458
- Aldekhayel S, Govshievich A, Neel OF, Luc M. Vascularized proximal fibula epiphyseal transfer for distal radius reconstruction in children: A systematic review. Microsurgery. 2016;36(8):705–711. doi: 10.1002/micr.22521
- Boyer MI, Bowen CV. Microvascular transplantation of epiphyseal plates: studies utilizing allograft donor material. Orthop Clin North Am. 2007;38(1):103-vii. doi: 10.1016/j.ocl.2006.10.002
- McCullough MC, Arkader A, Ariani R, et al. Surgical outcomes, complications, and long-term functionality for free vascularized fibula grafts in the pediatric population: A 17-year experience and systematic review of the literature. J Reconstr Microsurg. 2020;36(5):386–396. doi: 10.1055/s-0040-1702147
- Schwarz GS, Disa JJ, Mehrara BJ, et al. Reconstruction of oncologic tibial defects in children using vascularized fibula flaps. Plast Reconstr Surg. 2012;129(1):195–206. doi: 10.1097/PRS.0b013e318230e463
- Konttila E, Koljonen V, Kauhanen S, et al. Microvascular reconstruction in children-a report of 46 cases. J Trauma. 2010;68(3):548–552. doi: 10.1097/TA.0b013e3181a5f42c
- Ozols D, Blums K, Krumins M, et al. Entire calcaneus reconstruction with pedicled composite fibular growth plate flap in a pediatric patient. Microsurgery. 2021;41(3):280–285. doi: 10.1002/micr.30691
- Taylor GI, Corlett RJ, Ashton MW. The evolution of free vascularized bone transfer: A 40-year experience. Plast Reconstr Surg. 2016;137(4):1292–1305. doi: 10.1097/PRS.0000000000002040
- Allsopp BJ, Hunter-Smith DJ, Rozen WM. Vascularized versus nonvascularized bone grafts: What is the evidence? Clin Orthop Relat Res. 2016;474(5):1319–1327. doi: 10.1007/s11999-016-4769-4
- Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review. J Biomed Nanotechnol. 2014;10(10):3124–3140. doi: 10.1166/jbn.2014.1893
- Wen Y, Xun S, Haoye M, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–1698. doi: 10.1039/c7bm00315c
- Lokmic Z, Stillaert F, Morrison WA, et al. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J. 2007;21(2):511–522. doi: 10.1096/fj.06-6614com
- Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2010;10(1):12–27. doi: 10.1002/mabi.200900107
- Zheng L, Lv X, Zhang J, et al. Deep circumflex iliac artery perforator flap with iliac crest for oromandibular reconstruction. J Craniomaxillofac Surg. 2018;46(8):1263–1267. doi: 10.1016/j.jcms.2018.04.021
- Schreiber M, Dragu A. Free temporal fascia flap to cover soft tissue defects of the foot: a case report. GMS Interdiscip Plast Reconstr Surg DGPW. 2015;4:Doc01. doi: 10.3205/iprs000060
- Polykandriotis E, Arkudas A, Beier JP, et al. Intrinsic axial vascularization of an osteoconductive bone matrix by means of an arteriovenous vascular bundle. Plast Reconstr Surg. 2007;120(4):855–868. doi: 10.1097/01.prs.0000277664.89467.14
- Weigand A, Beier JP, Hess A, et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A. 2015;21(9–10):1680–1694. doi: 10.1089/ten.TEA.2014.0568
- Tanaka Y, Sung KC, Tsutsumi A, et al. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg. 2003;112(6):1636–1644. doi: 10.1097/01.PRS.0000086140.49022.AB
- Yuan Q, Arkudas A, Horch RE, et al. Vascularization of the arteriovenous loop in a rat isolation chamber model-quantification of hypoxia and evaluation of its effects. Tissue Eng Part A. 2018;24(9–10):719–728. doi: 10.1089/ten.TEA.2017.0262
- Schmidt VJ, Hilgert JG, Covi JM, et al. High flow conditions increase connexin 43 expression in a rat arteriovenous and angioinductive loop model. PLoS One. 2013;8(11):e78782. doi: 10.1371/journal.pone.0078782
- Arkudas A, Tjiawi J, Bleiziffer O, et al. Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Mol Med. 2007;13(9–10):480–487. doi: 10.2119/2007-00057
- Arkudas A, Beier JP, Heidner K, et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007;13(7):1549–1560. doi: 10.1089/ten.2006.0387
- Beier JP, Horch RE, Hess A, et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med. 2010;4(3):216–223. doi: 10.1002/term.229
- Horch RE, Beier JP, Kneser U, Arkudas A. Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med. 2014;18(7):1478–1485. doi: 10.1111/jcmm.12296
- Arkudas A, Lipp A, Buehrer G, et al. Pedicled transplantation of axially vascularized bone constructs in a critical size femoral defect. Tissue Eng Part A. 2018;24(5–6):479–492. doi: 10.1089/ten.TEA.2017.0110
- Buehrer G, Balzer A, Arnold I, et al. Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model. Tissue Eng Part A. 2015;21(1–2):96–105. doi: 10.1089/ten.TEA.2014.0028
- Eweida AM, Nabawi AS, Abouarab M, et al. Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds. Clin Oral Investig. 2014;18(6):1671–1678. doi: 10.1007/s00784-013-1143-8
- Kim HY, Lee JH, Lee HAR, et al. Sustained release of BMP-2 from porous particles with leaf-stacked sructure for bone regeneration. ACS Appl Mater Interfaces. 2018;10(25):21091–21102. doi: 10.1021/acsami.8b02141
- Boos AM, Loew JS, Weigand A, et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 2013;7(8):654–664. doi: 10.1002/term.1457
- Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(7):1431–1441. doi: 10.2106/JBJS.E.00381
- Hokugo A, Sawada Y, Sugimoto K, et al. Preparation of prefabricated vascularized bone graft with neoangiogenesis by combination of autologous tissue and biodegradable materials. Int J Oral Maxillofac Surg. 2006;35(11):1034–1040. doi: 10.1016/j.ijom.2006.06.003
- Eweida A, Fathi I, Eltawila AM, et al. Pattern of bone generation after irradiation in vascularized tissue engineered constructs. J Reconstr Microsurg. 2018;34(2):130–137. doi: 10.1055/s-0037-1607322
- Polykandriotis E, Drakotos D, Arkudas A, et al. Factors influencing successful outcome in the arteriovenous loop model: a retrospective study of 612 loop operations. J Reconstr Microsurg. 2011;27(1):11–18. doi: 10.1055/s-0030-1267385
- Weigand A, Boos AM, Ringwald J, et al. New aspects on efficient anticoagulation and antiplatelet strategies in sheep. BMC Vet Res. 2013;9:192. doi: 10.1186/1746-6148-9-192
- Dong QS, Lin C, Shang HT, et al. Modified approach to construct a vascularized coral bone in rabbit using an arteriovenous loop. J Reconstr Microsurg. 2010;26(2):95–102. doi: 10.1055/s-0029-1243293
Supplementary files
