Treatment of pediatric patients with lower extremity deformities using software-assisted Ortho-SUV Frame: analysis of 213 cases

封面

如何引用文章

详细

Aim. To retrospectively assess treatment outcomes of long bone deformities of the lower extremities accompanied by shortening in pediatric patients using a software-assisted Ortho-SUV Frame.

Materials and methods. The accuracy of deformity correction (AC), period of deformity correction (PDC), external fixation index (EFI), and number of complications in 213 patients were retrospectively analyzed.

Results. According to different parameters, AC of femur deformity correction (group 1) varied from 90% to 96%. The average length increase was 47 ± 12 mm. The average distraction duration was 38 ± 14 days. The average PDC was 8 ± 6 days for simple deformities (SDs), 14 ± 7 days for moderate deformities (MDs), and 23 ± 12 days for complex deformities (CDs). EFI was 26 ± 8 days/cm for SDs, 31 ± 6 days/cm for MDs, and 35 ± 12 days/cm for CDs. According to different parameters, AC of the lower leg deformity correction (group 2) varied from 89% to 95%. The average length increase was 52 ± 20 mm. The average distraction duration was 45 ± 18 days. PDC was 11 ± 5 days for SDs, 16 ± 9 days for MDs, and 27 ± 16 days for CDs. EFI was 32 ± 14 days/cm for SDs, 42 ± 12 days/cm for MDs, and 49 ± 8 days/cm for CDs. There were 48 (50.5%) complications in group I with the majority (71%) classified as Caton grade I and 29% as grade II. There were 62 (45%) complications in group 2, where 50% were Caton grade I and 50% were Caton grade II. There were no serious complications (Caton grade III) in either group that influenced the final functional results.

Conclusion: Use of a software-assisted Ortho-SUV Frame increased the efficiency of treatment of pediatric patients with long bone deformities because of the great accuracy of deformity correction.

作者简介

Viktor Vilensky

The Turner Scientific and Research Institute for Children’s Orthopedics

编辑信件的主要联系方式.
Email: vavilensky@mail.ru
MD, PhD, senior research associate of the department of bone pathology 俄罗斯联邦

Andrey Pozdeev

The Turner Scientific and Research Institute for Children’s Orthopedics

Email: aapozdeev@gmail.com
MD, PhD, orthopedic and trauma surgeon of the department of bone pathology 俄罗斯联邦

Timur Zubairov

The Turner Scientific and Research Institute for Children’s Orthopedics

Email: fake@eco-vector.ru
MD, PhD, research associate of the department of bone pathology 俄罗斯联邦

Ekaterina Zakharyan

The Turner Scientific and Research Institute for Children’s Orthopedics

Email: zax-2008@mail.ru
MD, orthopedic and trauma surgeon 俄罗斯联邦

Aleksander Pozdeev

MD, PhD, professor, chief research associate of the department of bone pathology

Email: prof.pozdeev@mail.ru
The Turner Scientific and Research Institute for Children’s Orthopedics 俄罗斯联邦

参考

  1. Илизаров Г.А., Зырянов С.Я. Коррекция деформаций сегментов нижней конечности с одновременным удлинением ее по Илизарову. Метод Илизарова: теория, эксперимент, клиника: тез. докл. юбилейной международ. конф. — Курган, 1991. — С. 287–289. [Ilizarov GA, Zyrjanov SJa. Korrekcija deformacij segmentov nizhnej konechnosti s odnovremennym udlineniem ee po Ilizarovu. Metod Ilizarova: teorija, jeksperiment, klinika. [conference proceedings] Kurgan; 1991. P. 287-289. (In Russ.)]
  2. Ilizarov GA. Transosseous osteosynthesis. Theoretical and clinical aspects of the regeneration and growth of tissue. Springer-Verlag Berlin, Heidelberg, New York, 1992. 800 p. doi: 10.3109/17453679209154834.
  3. Соломин Л.Н. Основы чрескостного остеосинтеза. Частные вопросы – 2. — Т. 2. — 2-е изд., перераб. и доп. — М.: БИНОМ, 2015. — 560 с. [Solomin LN. Osnovy chreskostnogo osteosinteza. Chastnye voprosy – 2. Vol. 2. Moscow: BINOM; 2015. 560 p. (In Russ.)]
  4. Голяховский В., Френкель В. Руководство по чрескостному остеосинтезу методом Илизарова: Пер. с англ. — М.: БИНОМ, 1999. — 272 с. [Goljahovskij V, Frenkel’ V. Rukovodstvo po chreskostnomu osteosintezu metodom Ilizarova. Translation from English. Moscow: BINOM; 1999. 272 p. (In Russ.)].
  5. Ли А.Д., Попков А.В., Грачева В.И., и др. Возможности чрескостного остеосинтеза по Илизарову в ликвидации укорочения у взрослых и детей. Экспериментально-теоретические и клинические аспекты разрабатываемого в КНИИЭКОТ метода чрескостного остеосинтеза: материалы Всесоюз. симпоз. с участ. иностр. специал. — Курган, 1984. — C. 177–181. [Li AD, Popkov AV, Gracheva VI, et al. Vozmozhnosti chreskostnogo osteosinteza po Ilizarovu v likvidacii ukorochenija u vzroslyh i detej. Jeksperimental’no-teoreticheskie i klinicheskie aspekty razrabatyvaemogo v KNIIJeKOT metoda chreskostnogo osteosinteza. [conference proceedings] Kurgan, 1984. P. 177-181. (In Russ.)]
  6. Hsu RWW, et al. Normal axial alignment of lower extremity and load-bearing distribution at the knee. Clin Orthop Clinical and Rel Res. 1990;255:215-227. doi: 10.1097/00003086-199006000-00029.
  7. Paley D. Principles of deformity correction. New York: Springer-Verlag; 2005. 806 p.
  8. Соломин Л.Н., Щепкина Е.А., Кулеш П.Н., и др. Определение референтных линий и углов длинных трубчатых костей: пособие для врачей / РНИИТО им. Р.Р. Вредена. — СПб., 2010. — 48 с. [Solomin LN, Shhepkina EA, Kulesh PN, et al. Opredelenie referentnyh linij i uglov dlinnyh trubchatyh kostej: posobie dlja vrachej / RNIITO named after R.R. Vredena. Saint Petersburg; 2010. 48 p. (In Russ.)]
  9. Eren I, Eralp L, Kocaoglu M. Comparative clinical study on deformity correction accuracy of different external fixators . Int Orthop (SICOT). 2013;37(11):2247. doi: 10.1007/s00264-013-2116-x.
  10. Manner HM, Huebl M, Radler C, et al. Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor spatial frame with the Ilizarov ring fixator. J Child Orthop. 2007;1(1):55. doi: 10.1007/s11832-006-0005-1.
  11. Скоморошко П.В. Оптимизация лечения больных с диафизарными деформациями бедренной кости на основе использования чрескостного аппарата со свойствами пассивной компьютерной навигации: дис. … канд. мед. наук. — СПб., 2014. — 224 с. [Skomoroshko PV. Optimizacija lechenija bol’nyh s diafizarnymi deformacijami bedrennoj kosti na osnove ispol’zovanija chreskostnogo apparata so svojstvami passivnoj komp’juternoj navigacii [dissertation]. Saint Petersburg; 2014. (In Russ.)]
  12. Соломин Л.Н., Щепкина Е.А., Виленский В.А., и др. Коррекция деформаций бедренной кости по Илизарову и основанным на компьютерной навигации аппаратом «Орто-СУВ» // Травматология и ортопедия России. — 2011. — № 3. — С. 32–39. [Solomin LN, Shhepkina EA, Vilenskij VA, et al. Correction of femur deformities by Ilizarov method and by apparatus Ortho-SUV based on computer navigation. Traumatology and Orthopedics of Russia. 2011;(3):32-39. (In Russ.)]. doi: 10.21823/2311-2905-2011-0-3-32-39.
  13. Dammerer D, Kirschbichler K, Donnan L, et al. Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop. 2011;5(5):343. doi: 10.1007/s11832-011-0361-3.
  14. Eidelman M, Bialik V, Katzman A. Correction of deformities in children using the Taylor spatial frame. J Pediatr Orthop B. 2006;15(6):387-395. doi: 10.1097/01.bpb.0000228380.27239.8a.
  15. Paley D. History and Science Behind the Six-Axis Correction External Fixation Devices in Orthopaedic Surgery. Oper Tech Orthop. 2011;21:125-128. doi: 10.1053/j.oto.2011.01.011.
  16. Виленский В.А., Поздеев А.П., Бухарев Э.В., и др. Ортопедические гексаподы: история, настоящее, перспективы // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2015. — T. 3. — № 1. — C. 61–69. [Vilenskij VA, Pozdeev AP, Buharev EV, et al. Orthopedic hexapods: history, present and prospects. Pediatric traumatology, orthopaedics and reconstructive surgery. 2015;3(1):61-69. (In Russ.)]. doi: 10.17816/PTORS3161-69.
  17. Соломин Л.Н., Виленский В.А., Утехин А.И., Террел В. Сравнительный анализ репозиционных возможностей чрескостных аппаратов, работающих на основе компьютерной навигации и аппарата Илизарова // Гений ортопедии. — 2009. — № 1. — С. 5–10. [Solomin LN, Vilensky VA, Utekhin AI, Terrel V. The comparative analysis of the reposition potentials of transosseous devices operating on the basis of computer navigation and the Ilizarov fixator. Genij Ortopedii. 2009;(1):5-10. (In Russ.)].
  18. Соломин Л.Н., Виленский В.А., Утехин А.И., Террел В. Сравнительный анализ жесткости остеосинтеза, обеспечиваемой чрескостными аппаратами, работающими на основе компьютерной навигации, и комбинированным спицестержневым аппаратом // Травматология и ортопедия России. — 2009. — № 2 — С. 20–25. [Solomin LN, Vilenskij VA, Utehin AI, Terrel V. Sravnitel’nyj analiz zhestkosti osteosinteza, obespechivaemoj chreskostnymi apparatami, rabotajushhimi na osnove komp’juternoj navigacii i kombinirovannym spice-sterzhnevym apparatom. Travmatologija i ortopedija Rossii. 2009;(2):20-25. (In Russ.)]
  19. Solomin LN, Paley D, Shchepkina EA, et al. A comparative study of the correction of femoral deformity between the Ilizarov apparatus and Ortho-SUV Frame. Int Orthop (SICOT). 2014;38:865. doi: 10.1007/s00264-013-2247-0.
  20. Соломин Л.Н., Виленский В.А. Практическая классификация деформаций длинных трубчатых костей // Травматология и ортопедия России. — 2008. — № 3 (Приложение). — С. 44. [Solomin LN, Vilenskij VA. Prakticheskaja klassifikacija deformacij dlinnyh trubchatyh kostej. Travmatologija i ortopedija Rossii. 2008;(3)(prilozhenie):44 (In Russ.)]
  21. Caton J. L’allongement bilatéral des membres inférieurs chez les sujets de petite taille en France. Résultats de l’enquête GEOP; notre expérience: Traitement des inegalites de longueur des membres inferieurs et des sujets de petite taille chez l’enfant et l’adolescent: Sym-posium sous la direction de J. Caton (Lyon). Rev Chir Orthop. 1991;77(1):74-77.
  22. Kettelkamp DB, Hillberry BM, Murrish DE, Heck DA. Degenerative arthritis of the knee secondary to fracture malunion. Clin Orthop Relat Res. 1988;234:159-169. doi: 10.1097/00003086-198809000-00029.
  23. Probe RA. Lower extremity angular malunion. J Am Acad Orth Surg. 2003;11:302-311.
  24. Sharma L, Eckstein F, Song J, et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 2008;58(6):1716-1726. doi: 10.1002/art.23462.
  25. Park K-W, Garcia RN, Rejuso CA, et al. Limb Lengthening in Patients with Achondroplasia. Yonsei Medical Journal. 2015;56(6):1656-1662. doi: 10.3349/ymj.2015.56.6.1656.
  26. Marangoz S, Feldman DS, Sala DA, et al. Femoral deformity correction in children and young adults using Taylor spatial frame. Clin Orthop Relat Res. 2008;466(12):3018. doi: 10.1007/s11999-008-0490-2.
  27. Koren L, Keren Y, Eidelman M, Koren L. Multiplanar deformities correction using Taylor Spatial Frame in skeletally immature patients. Open Orthop J. 2016;10:71-79. doi: 10.2174/1874325001610010603.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Vilensky V.A., Pozdeev A.A., Zubairov T.F., Zakharyan E.A., Pozdeev A.P., 2016

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».