Effect of cell-seeded polycaprolactone-based implants on regenerative processes in a jaw bone defect in rabbits
- Authors: Dombrovskaya Y.A.1, Enukashvily N.I.1, Dubinenko G.E.2, Tverdokhlebov S.I.2, Rumyantseva E.A.1, Badaraev A.D.2, Bagaeva V.V.1, Kravets O.N.1, Sakhanov A.A.1, Dosaeva O.Y.1, Bukarova S.E.1, Kotov M.I.1, Semenova N.Y.3,4, Novosad Y.A.5, Safonov P.А.5, Vissarionov S.V.5, Semenov M.G.1, Silin A.V.1
-
Affiliations:
- North-Western State Medical University named after I.I. Mechnikov
- Tomsk Polytechnic University
- Almazov National Medical Research Center
- Russian Research Institute of Hematology and Transfusiology Federal Medical and Biological Agency
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- Issue: Vol 13, No 4 (2025)
- Pages: 410-429
- Section: Experimental and theoretical research
- URL: https://journals.rcsi.science/turner/article/view/375529
- DOI: https://doi.org/10.17816/PTORS691960
- EDN: https://elibrary.ru/FVUWNP
- ID: 375529
Cite item
Abstract
BACKGROUND: In modern regenerative medicine, the development of personalized biomedical cellular products for the replacement of bone tissue defects is crucial. Such products consist of a cellular component, a scaffold designed to retain cells and provide mechanical support, and auxiliary components. In vitro experiments do not adequately assess the effects of these constructs on bone regeneration or on the systemic response of the recipient organism.
AIM: This study aimed to determine the outcomes of implanting scaffolds based on polycaprolactone, hydroxyapatite, and dental pulp stem cells into jaw bone defects in rabbits.
METHODS: The study was conducted in Soviet (Russian) Chinchilla rabbits (n = 10) weighing 3.5–4.5 kg and aged 1–1.5 years bred under vivarium conditions. Four teeth were extracted from each animal (40 teeth in total), then the animals were divided into 5 groups. The regenerative outcomes were assessed after 4 months. To evaluate differences in the extent and rate of defect healing, histopathological examination of the implantation sites was performed. The degree of fibrosis, inflammation, and bone tissue remodeling was assessed in hematoxylin and eosin–stained sections, whereas the distribution pattern of implanted cells labeled with iron oxide nanoparticles was evaluated using Perls’ staining.
RESULTS: At the implantation sites, scaffolds (both cell-seeded and cell-free) accelerated bone defect remodeling and fibrosis without the formation of coarse scar tissue. The most favorable combination of outcomes—namely minimal inflammation, the most advanced stage of bone tissue remodeling, and mature connective tissue formation at the implantation site—was observed in the group receiving copper-coated polycaprolactone scaffolds seeded with dental pulp stem cells.
CONCLUSION: The results confirm the promise of this approach for the development of bioengineered constructs for the reconstruction of bone defects.
About the authors
Yuliya A. Dombrovskaya
North-Western State Medical University named after I.I. Mechnikov
Author for correspondence.
Email: yuliya.dombrovskaya@szgmu.ru
ORCID iD: 0000-0001-7715-1008
SPIN-code: 5551-8789
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgNatella I. Enukashvily
North-Western State Medical University named after I.I. Mechnikov
Email: Natella.Enukashvili@szgmu.ru
ORCID iD: 0000-0002-5971-7917
SPIN-code: 8161-3663
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgGleb E. Dubinenko
Tomsk Polytechnic University
Email: dubinenko@tpu.ru
ORCID iD: 0000-0001-9466-469X
SPIN-code: 7129-6548
Russian Federation, Tomsk
Sergei I. Tverdokhlebov
Tomsk Polytechnic University
Email: tverd@tpu.ru
ORCID iD: 0000-0002-2242-6358
SPIN-code: 9005-9207
Cand. Sci. (Physics and Mathematics)
Russian Federation, TomskElizaveta A. Rumyantseva
North-Western State Medical University named after I.I. Mechnikov
Email: lizarum2102@mail.ru
ORCID iD: 0009-0000-8118-0143
SPIN-code: 3835-5803
Russian Federation, Saint Petersburg
Arsalan D. Badaraev
Tomsk Polytechnic University
Email: adb6@tpu.ru
ORCID iD: 0000-0003-2800-7565
SPIN-code: 7096-2340
Cand. Sci. (Engineering)
Russian Federation, TomskVarvara V. Bagaeva
North-Western State Medical University named after I.I. Mechnikov
Email: bagvar@mail.ru
ORCID iD: 0009-0008-5104-2872
SPIN-code: 7510-6930
Russian Federation, Saint Petersburg
Olga N. Kravets
North-Western State Medical University named after I.I. Mechnikov
Email: Olga.Kravetc@szgmu.ru
ORCID iD: 0009-0008-3252-0605
SPIN-code: 4278-7900
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgAnton A. Sakhanov
North-Western State Medical University named after I.I. Mechnikov
Email: anton.sakhanov@szgmu.ru
ORCID iD: 0000-0003-4217-6330
SPIN-code: 8595-3308
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgOlesya Yu. Dosaeva
North-Western State Medical University named after I.I. Mechnikov
Email: Olesya.dosaeva.99@mail.ru
ORCID iD: 0009-0000-6508-9518
Russian Federation, Saint Petersburg
Sefiyat E. Bukarova
North-Western State Medical University named after I.I. Mechnikov
Email: Sofiya.bukarova@mail.ru
ORCID iD: 0009-0005-1016-9306
Russian Federation, Saint Petersburg
Mikhail I. Kotov
North-Western State Medical University named after I.I. Mechnikov
Email: drmikhailkotov@gmail.com
ORCID iD: 0009-0000-6655-6181
SPIN-code: 5483-9025
Russian Federation, Saint Petersburg
Natalia Yu. Semenova
Almazov National Medical Research Center; Russian Research Institute of Hematology and Transfusiology Federal Medical and Biological Agency
Email: semenova@mlc-lab.ru
ORCID iD: 0000-0003-4069-0678
SPIN-code: 3566-4723
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgYury A. Novosad
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN-code: 3001-1467
Russian Federation, Saint Petersburg
Platon А. Safonov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: safo165@gmail.com
ORCID iD: 0009-0006-7554-1292
SPIN-code: 6088-1297
MD
Russian Federation, Saint PetersburgSergei V. Vissarionov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS
Russian Federation, Saint PetersburgMikhail G. Semenov
North-Western State Medical University named after I.I. Mechnikov
Email: mikhail.semenov@szgmu.ru
ORCID iD: 0000-0002-1295-1554
SPIN-code: 2603-1085
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint-PetersburgAlexey V. Silin
North-Western State Medical University named after I.I. Mechnikov
Email: a.silin@szgmu.ru
ORCID iD: 0000-0002-3533-5615
SPIN-code: 4956-6941
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgReferences
- Neizberg DM, Silina ES, Pachkoria MG. Application of barrier membranes made of acellular collagen matrix for alveolar ridge reconstruction with guided tissue regeneration method. Medical Alphabet. 2019;3(23):24–29. doi: 10.33667/2078-5631-2019-3-23(398)-24-29 EDN: QCKQHK
- Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008 EDN: ACAMKF
- Chamieh F, Collignon AM, Coyac BR, et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6:38814. doi: 10.1038/srep38814
- Ebrahimi M, Botelho M. Adult stem cells of orofacial origin: current knowledge and limitation and future trend in regenerative medicine. Tissue Eng Regen Med. 2017;14(6):719–733. doi: 10.1007/s13770-017-0078-6 EDN: YDUIQH
- Zhang Q, Wu W, Qian C, et al. Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater Sci Eng C. 2019;103:109858. doi: 10.1016/j.msec.2019.109858 EDN: RNHEUT
- Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474 EDN: ERHINQ
- Sadilina SV. Justification of various methods of bone grafting of the alveolar process of the upper jaw and the alveolar part of the lower jaw in preparation for dental prosthetics. [dissertation abstract]. Saint Petersburg: S.M. Kirov Military Medical Academy; 2019. 26 p. (In Russ.)
- Lobov A, Malashicheva A. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? Biol Commun. 2022;67(1):32–48. doi: 10.21638/spbu03.2022.104 EDN: TODZPR
- Varshney S, Dwivedi A, Pandey V. Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion - A systematic review of human studies. J Oral Biol Craniofacial Res. 2020;10(4):347–355. doi: 10.1016/j.jobcr.2020.06.007 EDN: TWIZCY
- Grimm WD, Dannan A, Giesenhagen B, et al. Translational research: palatal-derived ecto-mesenchymal stem cells from human palate: a new hope for alveolar bone and cranio-facial bone reconstruction. Int J Stem Cells. 2014;7(1):23–29. doi: 10.15283/ijsc.2014.7.1.23 EDN: SGLDFV
- Kotova AV, Lobov AA, Dombrovskaya JA, et al. Comparative analysis of dental pulp and periodontal stem cells: Differences in morphology, functionality, osteogenic differentiation and proteome. Biomedicines. 2021;9(11):1606. doi: 10.3390/biomedicines9111606 EDN: OEKIRF
- Lobov A, Kuchur P, Khizhina A, et al. Mesenchymal cells retain the specificity of embryonal origin during osteogenic differentiation. Stem Cells. 2023;42(1):76–89. doi: 10.1093/stmcls/sxad081 EDN: WEHYQU
- Baldión PA, Velandia-Romero ML, Castellanos JE. Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int J Cell Biol. 2018;2018(1):6853189. doi: 10.1155/2018/6853189
- Dombrovskaya YA, Enukashvily NI, Kotova AV, et al. Fibrin scaffolds containing dental pulp stem cells for the repair of periodontal bone defects. Transl Med. 2020;7(1):59–69. doi: 10.18705/2311-4495-2020-7-1-59-69 EDN: UKQGFU
- Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–2280. doi: 10.1242/dev.134189 EDN: WQEXLX
- Abdolahinia ED, Khatibi SMH, Sharifi S, Dizaj SM. Dental tissue engineering by neural differentiation of dental stem cells and nano-systems: A review. Open Dent J. 2023;17(1). doi: 10.2174/0118742106252539230920071742 EDN: LXKZCJ
- Enukashvily NI, Dombrovskaya JA, Kotova AV, et al. Fibrin glue implants seeded with dental pulp and periodontal ligament stem cells for the repair of periodontal bone defects: A preclinical study. Bioengineering. 2021;8(6):75. doi: 10.3390/bioengineering8060075 EDN: OBNQIG
- Ramezanifard R, Seyedjafari E, Ardeshirylajimi A, Soleimani M. Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Mater Sci Eng C. 2016;62:398–406. doi: 10.1016/j.msec.2016.01.089 EDN: YEIZJL
- Mishanin AI, Panina AN, Bolbasov EN, et al. Biocompatibility of electrospinning polycaprolactone, polylactic acid, their blends and copolymers scaffolds in in vitro tests if mesenchyme stem cells. Transl Med. 2021;8(5):38–49. doi: 10.18705/2311-4495-2021-8-5-38-49 EDN: EYGHLM
- Yaseri R, Fadaie M, Mirzaei E, et al. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance. Sci Rep. 2023;13(1):9434. doi: 10.1038/s41598-023-36563-w EDN: VYASTF
- Paim A, Braghirolli DI, Cardozo NSM, et al. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. Brazilian J Med Biol Res. 2018;51(5):e6754. doi: 10.1590/1414-431x20186754
- Yudintseva NM, Nashchekina YA, Shevtsov MA, et al. Small-diameter vessels reconstruction using cell tissue-engineering graft based on the polycaprolactone. Cell and Tissue Biology. 2021;63(3):281–291. doi: 10.31857/S0041377121030111 EDN: PMGNLY
- Yan Q, Dong H, Su J, et al. A review of 3d printing technology for medical applications. Engineering. 2018;4(5):729–742. doi: 10.1016/j.eng.2018.07.021
- Oktavia Ningrum E, Safari Azhar I, Ciptonugroho W, et al. A polycaprolactone-hydroxyapatite (PCL/HAp) scaffold, prepared from blue crab shell (Portunus Pelagicus) waste, for bone substitution applications. ChemistrySelect. 2024;9(24):e202303971. doi: 10.1002/slct.202303971 EDN: BAIVOG
- Wang FZ, Liu S, Gao M, et al. 3D-printed polycaprolactone/hydroxyapatite bionic scaffold for bone regeneration. Polymers (Basel). 2025;17(7):858. doi: 10.3390/polym17070858 EDN: RXBNWL
- Nimiritsky PP, Sagaradze GD, Efimenko AY, et al. The stem cell niche. Cell and Tissue Biology. 2018;60(8):575–586. doi: 10.31116/tsitol.2018.08.01 EDN: XZJBED
- Sych LS, Reade PC. Heterochrony of tooth root initiation in rabbits. J Evol Biochem Physiol. 1990;3(3-4):283–293. doi: 10.1046/j.1420-9101.1990.3030283.x EDN: BBVQAN
- Capello V. Rabbit and Rodent Dentistry. 2005. 276 p.
- Bocharov VS, Dubinenko GE, Popkov DA, et al. Solvent/non-solvent treatment as a method for surface coating of poly(ε-caprolactone) 3D-printed scaffolds with hydroxyapatite. Genij Ortop. 2023;29(6):585–590. doi: 10.18019/1028-4427-2023-29-6-585-590 EDN: NGDFNX
- Alksne M, Kalvaityte M, Simoliunas E, et al. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater. 2020;104:103641. doi: 10.1016/j.jmbbm.2020.103641 EDN: DZWAZP
- Prikhodko EM, Supilnikova OV, Maslennikova IV, et al. Creation of a cell culture bank: experience of the Pokrovsky Cell Technology Center. Cardiovasc Ther Prev. 2024;23(11):97–107. doi: 10.15829/1728-8800-2024-4173 EDN: KVZRMX
- Koung Ngeun S, Shimizu M, Kaneda M. Characterization of rabbit mesenchymal stem/stromal cells after cryopreservation. Biology (Basel). 2023;12(10):1312. doi: 10.3390/biology12101312 EDN: DJVVHM
- Enukashvily NI, Kotkas IE, Bogolyubov DS, et al. Detection of cells containing internalized multidomain magnetic iron (II, III) oxide nanoparticles using the magnetic resonance imaging method. Tech Phys. 2020;65(9):1360–1369. doi: 10.1134/S1063784220090145 EDN: OCCGVS
- Dias JR, Sousa A, Augusto A, et al. Electrospun Polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers (Basel). 2022;14(16):1–15. doi: 10.3390/polym14163397 EDN: ULKOXY
- Kim JH, Park CH, Perez RA, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–1211. doi: 10.1177/0022034514540682 EDN: UOOLOL
- Ramona MD, Diana H, Monica V, Minodora D. Influence of scaffold structure and biomimetic properties on adipose stem cell homing in personalized reconstructive medicine. Biomimetics. 2025:10(7):438. doi: 10.3390/biomimetics10070438
- Dombrovskaya YA, Enukashvily NI, Silin AV. Regenerative bioengineering methods and additive technologies in dentistry. Politekh-Press; 2024. 101 p. EDN: KSIHDG
- Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci. 2021;16(1):501–507. doi: 10.1016/j.jds.2020.07.008 EDN: BSUSDP
- Díaz E, Sandonis I, Valle MB. In vitro degradation of poly(caprolactone)/nHA composites. J Nanomater. 2014;2014(1):802435. doi: 10.1155/2014/802435
- Hannink G, Arts JJC. Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury. 2011;42(S2):S22–S25. doi: 10.1016/j.injury.2011.06.008
- Li S, Meng L, Zhu Y, et al. Copper ion-loaded surface charge-convertible coatings on implant: Antibacterial and tunable cell adhesion properties. Chem Eng J. 2023;478:147439. doi: 10.1016/j.cej.2023.147439 EDN: OUBDYL
- Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896. doi: 10.1016/s0301-472x(03)00110-3
- Rawat S, Srivastava P, Mohanty S, et al. A comparative study on immunomodulatory potential of tissue specific hMSCs: Role of HLA-G. IOSR J Dent Med Sci. 2018;17(6):32–40. doi: 10.9790/0853-1706143240
Supplementary files
