Effect of cell-seeded polycaprolactone-based implants on regenerative processes in a jaw bone defect in rabbits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: In modern regenerative medicine, the development of personalized biomedical cellular products for the replacement of bone tissue defects is crucial. Such products consist of a cellular component, a scaffold designed to retain cells and provide mechanical support, and auxiliary components. In vitro experiments do not adequately assess the effects of these constructs on bone regeneration or on the systemic response of the recipient organism.

AIM: This study aimed to determine the outcomes of implanting scaffolds based on polycaprolactone, hydroxyapatite, and dental pulp stem cells into jaw bone defects in rabbits.

METHODS: The study was conducted in Soviet (Russian) Chinchilla rabbits (n = 10) weighing 3.5–4.5 kg and aged 1–1.5 years bred under vivarium conditions. Four teeth were extracted from each animal (40 teeth in total), then the animals were divided into 5 groups. The regenerative outcomes were assessed after 4 months. To evaluate differences in the extent and rate of defect healing, histopathological examination of the implantation sites was performed. The degree of fibrosis, inflammation, and bone tissue remodeling was assessed in hematoxylin and eosin–stained sections, whereas the distribution pattern of implanted cells labeled with iron oxide nanoparticles was evaluated using Perls’ staining.

RESULTS: At the implantation sites, scaffolds (both cell-seeded and cell-free) accelerated bone defect remodeling and fibrosis without the formation of coarse scar tissue. The most favorable combination of outcomes—namely minimal inflammation, the most advanced stage of bone tissue remodeling, and mature connective tissue formation at the implantation site—was observed in the group receiving copper-coated polycaprolactone scaffolds seeded with dental pulp stem cells.

CONCLUSION: The results confirm the promise of this approach for the development of bioengineered constructs for the reconstruction of bone defects.

About the authors

Yuliya A. Dombrovskaya

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: yuliya.dombrovskaya@szgmu.ru
ORCID iD: 0000-0001-7715-1008
SPIN-code: 5551-8789

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Natella I. Enukashvily

North-Western State Medical University named after I.I. Mechnikov

Email: Natella.Enukashvili@szgmu.ru
ORCID iD: 0000-0002-5971-7917
SPIN-code: 8161-3663

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Gleb E. Dubinenko

Tomsk Polytechnic University

Email: dubinenko@tpu.ru
ORCID iD: 0000-0001-9466-469X
SPIN-code: 7129-6548
Russian Federation, Tomsk

Sergei I. Tverdokhlebov

Tomsk Polytechnic University

Email: tverd@tpu.ru
ORCID iD: 0000-0002-2242-6358
SPIN-code: 9005-9207

Cand. Sci. (Physics and Mathematics)

Russian Federation, Tomsk

Elizaveta A. Rumyantseva

North-Western State Medical University named after I.I. Mechnikov

Email: lizarum2102@mail.ru
ORCID iD: 0009-0000-8118-0143
SPIN-code: 3835-5803
Russian Federation, Saint Petersburg

Arsalan D. Badaraev

Tomsk Polytechnic University

Email: adb6@tpu.ru
ORCID iD: 0000-0003-2800-7565
SPIN-code: 7096-2340

Cand. Sci. (Engineering)

Russian Federation, Tomsk

Varvara V. Bagaeva

North-Western State Medical University named after I.I. Mechnikov

Email: bagvar@mail.ru
ORCID iD: 0009-0008-5104-2872
SPIN-code: 7510-6930
Russian Federation, Saint Petersburg

Olga N. Kravets

North-Western State Medical University named after I.I. Mechnikov

Email: Olga.Kravetc@szgmu.ru
ORCID iD: 0009-0008-3252-0605
SPIN-code: 4278-7900

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Anton A. Sakhanov

North-Western State Medical University named after I.I. Mechnikov

Email: anton.sakhanov@szgmu.ru
ORCID iD: 0000-0003-4217-6330
SPIN-code: 8595-3308

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Olesya Yu. Dosaeva

North-Western State Medical University named after I.I. Mechnikov

Email: Olesya.dosaeva.99@mail.ru
ORCID iD: 0009-0000-6508-9518
Russian Federation, Saint Petersburg

Sefiyat E. Bukarova

North-Western State Medical University named after I.I. Mechnikov

Email: Sofiya.bukarova@mail.ru
ORCID iD: 0009-0005-1016-9306
Russian Federation, Saint Petersburg

Mikhail I. Kotov

North-Western State Medical University named after I.I. Mechnikov

Email: drmikhailkotov@gmail.com
ORCID iD: 0009-0000-6655-6181
SPIN-code: 5483-9025
Russian Federation, Saint Petersburg

Natalia Yu. Semenova

Almazov National Medical Research Center; Russian Research Institute of Hematology and Transfusiology Federal Medical and Biological Agency

Email: semenova@mlc-lab.ru
ORCID iD: 0000-0003-4069-0678
SPIN-code: 3566-4723

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Yury A. Novosad

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN-code: 3001-1467
Russian Federation, Saint Petersburg

Platon А. Safonov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: safo165@gmail.com
ORCID iD: 0009-0006-7554-1292
SPIN-code: 6088-1297

MD

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

Mikhail G. Semenov

North-Western State Medical University named after I.I. Mechnikov

Email: mikhail.semenov@szgmu.ru
ORCID iD: 0000-0002-1295-1554
SPIN-code: 2603-1085

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint-Petersburg

Alexey V. Silin

North-Western State Medical University named after I.I. Mechnikov

Email: a.silin@szgmu.ru
ORCID iD: 0000-0002-3533-5615
SPIN-code: 4956-6941

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. Neizberg DM, Silina ES, Pachkoria MG. Application of barrier membranes made of acellular collagen matrix for alveolar ridge reconstruction with guided tissue regeneration method. Medical Alphabet. 2019;3(23):24–29. doi: 10.33667/2078-5631-2019-3-23(398)-24-29 EDN: QCKQHK
  2. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008 EDN: ACAMKF
  3. Chamieh F, Collignon AM, Coyac BR, et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6:38814. doi: 10.1038/srep38814
  4. Ebrahimi M, Botelho M. Adult stem cells of orofacial origin: current knowledge and limitation and future trend in regenerative medicine. Tissue Eng Regen Med. 2017;14(6):719–733. doi: 10.1007/s13770-017-0078-6 EDN: YDUIQH
  5. Zhang Q, Wu W, Qian C, et al. Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater Sci Eng C. 2019;103:109858. doi: 10.1016/j.msec.2019.109858 EDN: RNHEUT
  6. Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474 EDN: ERHINQ
  7. Sadilina SV. Justification of various methods of bone grafting of the alveolar process of the upper jaw and the alveolar part of the lower jaw in preparation for dental prosthetics. [dissertation abstract]. Saint Petersburg: S.M. Kirov Military Medical Academy; 2019. 26 p. (In Russ.)
  8. Lobov A, Malashicheva A. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? Biol Commun. 2022;67(1):32–48. doi: 10.21638/spbu03.2022.104 EDN: TODZPR
  9. Varshney S, Dwivedi A, Pandey V. Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion - A systematic review of human studies. J Oral Biol Craniofacial Res. 2020;10(4):347–355. doi: 10.1016/j.jobcr.2020.06.007 EDN: TWIZCY
  10. Grimm WD, Dannan A, Giesenhagen B, et al. Translational research: palatal-derived ecto-mesenchymal stem cells from human palate: a new hope for alveolar bone and cranio-facial bone reconstruction. Int J Stem Cells. 2014;7(1):23–29. doi: 10.15283/ijsc.2014.7.1.23 EDN: SGLDFV
  11. Kotova AV, Lobov AA, Dombrovskaya JA, et al. Comparative analysis of dental pulp and periodontal stem cells: Differences in morphology, functionality, osteogenic differentiation and proteome. Biomedicines. 2021;9(11):1606. doi: 10.3390/biomedicines9111606 EDN: OEKIRF
  12. Lobov A, Kuchur P, Khizhina A, et al. Mesenchymal cells retain the specificity of embryonal origin during osteogenic differentiation. Stem Cells. 2023;42(1):76–89. doi: 10.1093/stmcls/sxad081 EDN: WEHYQU
  13. Baldión PA, Velandia-Romero ML, Castellanos JE. Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int J Cell Biol. 2018;2018(1):6853189. doi: 10.1155/2018/6853189
  14. Dombrovskaya YA, Enukashvily NI, Kotova AV, et al. Fibrin scaffolds containing dental pulp stem cells for the repair of periodontal bone defects. Transl Med. 2020;7(1):59–69. doi: 10.18705/2311-4495-2020-7-1-59-69 EDN: UKQGFU
  15. Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–2280. doi: 10.1242/dev.134189 EDN: WQEXLX
  16. Abdolahinia ED, Khatibi SMH, Sharifi S, Dizaj SM. Dental tissue engineering by neural differentiation of dental stem cells and nano-systems: A review. Open Dent J. 2023;17(1). doi: 10.2174/0118742106252539230920071742 EDN: LXKZCJ
  17. Enukashvily NI, Dombrovskaya JA, Kotova AV, et al. Fibrin glue implants seeded with dental pulp and periodontal ligament stem cells for the repair of periodontal bone defects: A preclinical study. Bioengineering. 2021;8(6):75. doi: 10.3390/bioengineering8060075 EDN: OBNQIG
  18. Ramezanifard R, Seyedjafari E, Ardeshirylajimi A, Soleimani M. Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Mater Sci Eng C. 2016;62:398–406. doi: 10.1016/j.msec.2016.01.089 EDN: YEIZJL
  19. Mishanin AI, Panina AN, Bolbasov EN, et al. Biocompatibility of electrospinning polycaprolactone, polylactic acid, their blends and copolymers scaffolds in in vitro tests if mesenchyme stem cells. Transl Med. 2021;8(5):38–49. doi: 10.18705/2311-4495-2021-8-5-38-49 EDN: EYGHLM
  20. Yaseri R, Fadaie M, Mirzaei E, et al. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance. Sci Rep. 2023;13(1):9434. doi: 10.1038/s41598-023-36563-w EDN: VYASTF
  21. Paim A, Braghirolli DI, Cardozo NSM, et al. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. Brazilian J Med Biol Res. 2018;51(5):e6754. doi: 10.1590/1414-431x20186754
  22. Yudintseva NM, Nashchekina YA, Shevtsov MA, et al. Small-diameter vessels reconstruction using cell tissue-engineering graft based on the polycaprolactone. Cell and Tissue Biology. 2021;63(3):281–291. doi: 10.31857/S0041377121030111 EDN: PMGNLY
  23. Yan Q, Dong H, Su J, et al. A review of 3d printing technology for medical applications. Engineering. 2018;4(5):729–742. doi: 10.1016/j.eng.2018.07.021
  24. Oktavia Ningrum E, Safari Azhar I, Ciptonugroho W, et al. A polycaprolactone-hydroxyapatite (PCL/HAp) scaffold, prepared from blue crab shell (Portunus Pelagicus) waste, for bone substitution applications. ChemistrySelect. 2024;9(24):e202303971. doi: 10.1002/slct.202303971 EDN: BAIVOG
  25. Wang FZ, Liu S, Gao M, et al. 3D-printed polycaprolactone/hydroxyapatite bionic scaffold for bone regeneration. Polymers (Basel). 2025;17(7):858. doi: 10.3390/polym17070858 EDN: RXBNWL
  26. Nimiritsky PP, Sagaradze GD, Efimenko AY, et al. The stem cell niche. Cell and Tissue Biology. 2018;60(8):575–586. doi: 10.31116/tsitol.2018.08.01 EDN: XZJBED
  27. Sych LS, Reade PC. Heterochrony of tooth root initiation in rabbits. J Evol Biochem Physiol. 1990;3(3-4):283–293. doi: 10.1046/j.1420-9101.1990.3030283.x EDN: BBVQAN
  28. Capello V. Rabbit and Rodent Dentistry. 2005. 276 p.
  29. Bocharov VS, Dubinenko GE, Popkov DA, et al. Solvent/non-solvent treatment as a method for surface coating of poly(ε-caprolactone) 3D-printed scaffolds with hydroxyapatite. Genij Ortop. 2023;29(6):585–590. doi: 10.18019/1028-4427-2023-29-6-585-590 EDN: NGDFNX
  30. Alksne M, Kalvaityte M, Simoliunas E, et al. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater. 2020;104:103641. doi: 10.1016/j.jmbbm.2020.103641 EDN: DZWAZP
  31. Prikhodko EM, Supilnikova OV, Maslennikova IV, et al. Creation of a cell culture bank: experience of the Pokrovsky Cell Technology Center. Cardiovasc Ther Prev. 2024;23(11):97–107. doi: 10.15829/1728-8800-2024-4173 EDN: KVZRMX
  32. Koung Ngeun S, Shimizu M, Kaneda M. Characterization of rabbit mesenchymal stem/stromal cells after cryopreservation. Biology (Basel). 2023;12(10):1312. doi: 10.3390/biology12101312 EDN: DJVVHM
  33. Enukashvily NI, Kotkas IE, Bogolyubov DS, et al. Detection of cells containing internalized multidomain magnetic iron (II, III) oxide nanoparticles using the magnetic resonance imaging method. Tech Phys. 2020;65(9):1360–1369. doi: 10.1134/S1063784220090145 EDN: OCCGVS
  34. Dias JR, Sousa A, Augusto A, et al. Electrospun Polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers (Basel). 2022;14(16):1–15. doi: 10.3390/polym14163397 EDN: ULKOXY
  35. Kim JH, Park CH, Perez RA, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–1211. doi: 10.1177/0022034514540682 EDN: UOOLOL
  36. Ramona MD, Diana H, Monica V, Minodora D. Influence of scaffold structure and biomimetic properties on adipose stem cell homing in personalized reconstructive medicine. Biomimetics. 2025:10(7):438. doi: 10.3390/biomimetics10070438
  37. Dombrovskaya YA, Enukashvily NI, Silin AV. Regenerative bioengineering methods and additive technologies in dentistry. Politekh-Press; 2024. 101 p. EDN: KSIHDG
  38. Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci. 2021;16(1):501–507. doi: 10.1016/j.jds.2020.07.008 EDN: BSUSDP
  39. Díaz E, Sandonis I, Valle MB. In vitro degradation of poly(caprolactone)/nHA composites. J Nanomater. 2014;2014(1):802435. doi: 10.1155/2014/802435
  40. Hannink G, Arts JJC. Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury. 2011;42(S2):S22–S25. doi: 10.1016/j.injury.2011.06.008
  41. Li S, Meng L, Zhu Y, et al. Copper ion-loaded surface charge-convertible coatings on implant: Antibacterial and tunable cell adhesion properties. Chem Eng J. 2023;478:147439. doi: 10.1016/j.cej.2023.147439 EDN: OUBDYL
  42. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896. doi: 10.1016/s0301-472x(03)00110-3
  43. Rawat S, Srivastava P, Mohanty S, et al. A comparative study on immunomodulatory potential of tissue specific hMSCs: Role of HLA-G. IOSR J Dent Med Sci. 2018;17(6):32–40. doi: 10.9790/0853-1706143240

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Эко-Вектор


 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).