Hallux valgus in equino-planovalgus foot deformity in children with cerebral palsy and its etiopathogenesis: a review (part 1)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Hallux valgus in children with cerebral palsy is an understudied problem. Treatment approaches are generally applied as a secondary measure, often after the child starts complaining at an older age following correction of contractures and other foot deformities. Moreover, there are no established methods for the early prevention or treatment of hallux valgus. Understanding the fundamental mechanisms of etiopathogenesis and biomechanical disturbances during gait is crucial for developing preventive and therapeutic strategies for this patient population.

AIM: To analyze international studies of foot deformities in children with cerebral palsy and compare these findings with biomechanical studies in patients with idiopathic hallux valgus without neurological pathology.

METHODS: Sixty-four scientific articles and publications retrieved from multiple databases without time restrictions were reviewed.

RESULTS: Equinoplanovalgus foot deformity is a major etiopathogenetic factor in the development of hallux valgus in children with cerebral palsy. Biomechanical alterations associated with hallux valgus are characterized by limited dorsiflexion of the hallux, excessive dorsiflexion of the first ray, restricted supination of the hindfoot and midfoot, and increased plantar flexion of the ankle joint during the terminal stance phase. In equinoplanovalgus deformity, excessive pronation of the hindfoot and midfoot cannot be compensated because of the limited range of motion of the midtarsal joint, causing restricted midfoot supination and the inability to activate the locking mechanisms of the midfoot and forefoot during terminal stance.

CONCLUSION: Any biomechanical disturbance within the complex multisegmental structure of the lower extremity that reduces hindfoot and midfoot supination, causes first ray eversion, and limits hallux dorsiflexion may contribute to deformity. The diversity of motor disorders, contracture patterns, and deformities in children with cerebral palsy indicates the need for further research aimed at identifying the specific factors involved in hallux valgus formation. Such findings may be beneficial for developing preventive and therapeutic strategies for early-stage deformities.

About the authors

Valery V. Umnov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853

MD, PhD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Dmitriy S. Zharkov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: zds05@mail.ru
ORCID iD: 0000-0002-8027-1593

MD

Russian Federation, Saint Petersburg

Vladimir А. Novikov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Dmitriy V. Umnov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN-code: 1376-7998

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Lake NC. The problem of hallux valgus. Ann R Coll Surg Engl. 1956;19(1):23–35.
  2. Seki H, Miura A, Sato N, et al. Correlation between degree of hallux valgus and kinematics in classical ballet: a pilot study. PLoS One. 2020;15(4):e0231015. EDN: SSCZLX doi: 10.1371/journal.pone.0231015
  3. Nguyen US, Hillstrom HJ, Li W, et al. Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study. Osteoarthritis Cartilage. 2010;18(1):41–46. doi: 10.1016/j.joca.2009.07.008
  4. Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3:21. EDN: YBRHWN doi: 10.1186/1757-1146-3-21
  5. Ferrari J, Hopkinson DA, Linney AD. Size and shape differences between male and female foot bones: is the female foot predisposed to hallux abducto valgus deformity? J Am Podiatr Med Assoc. 2004;94(5):434–452. doi: 10.7547/0940434
  6. Antrobus JN. The primary deformity in hallux valgus and metatarsus primus varus. Clin Orthop Relat Res. 1984;(184):251–255.
  7. Kilmartin TE, Barrington RL, Wallace WA. A controlled prospective trial of a foot orthosis for juvenile hallux valgus. J Bone Joint Surg Br .1994;49(9):146–148.
  8. ZaferAtbaşı, Yusuf Erdem, OzkanKose, et al. Relationship between hallux valgus and pes planus: real or fiction? Foot Ankle Surg. 2020;59(3):513–517. EDN: SNOXNB doi: 10.1053/j.jfas.2019.09.037
  9. Suh DH, Kim HJ, Park JH, et al. Relationship between hallux valgus and pes planus in adult patients. J Foot Ankle Surg. 2021;60(2):297–301. EDN: YHUBXI doi: 10.1053/j.jfas.2020.06.030
  10. Cacace LA, Hillstrom HJ, Dufour AB, et al. The association between pes planus foot type and the prevalence of foot disorders: the Framingham foot study. Osteoarthritis and Cartilage. 2014;21:166–167. doi: 10.1016/j.joca.2013.02.356
  11. Coughlin MJ. Roger A. Mann Award. Juvenile hallux valgus: etiology and treatment. Foot Ankle Int. 1995;16(11):682–697. doi: 10.1177/107110079501601104
  12. Hetherington VJ. Hallux valgus and forefoot surgery. New York: Churchill Livingstone; 1994.
  13. Arinci Incel N, Genç H, Erdem HR, et al. Muscle imbalance in hallux valgus: an electromyographic study. Am J Phys Med Rehabil. 2003;82(5):345–349. doi: 10.1097/01.PHM.0000064718.24109.26
  14. Cavalheiro CS, Arcuri MH, Guil VR, et al. Hallux valgus anatomical alterations and its correlation with the radiographic findings. Acta Ortop Bras. 2020;28(1):12–15. EDN: KNOAOH doi: 10.1590/1413-785220202801226897
  15. Kim PW. Review of anatomical changes in the musculature of the foot as seen in the cadavers study with hallux valgus. FASEB J. 2016;30(1):1043–1047.
  16. Morton DJ. Hypermobility of the first metatarsal bone: The interlinking factor between metatarsalgia and longitudinal arch strain. J Bone Joint Surg. 1928;10:187–196.
  17. Klaue K. Hallux valgus – ein Atavismus? Therapeutische Umschau. 2004;61(7):407–412. (In German). doi: 10.1024/0040-5930.61.7.407
  18. Isidro A, Gonzalez Casanova JC. A glimpse into the evolution of the hallucialtarso-metatarsal joint. Foot Ankle Surg. 2002;8(3):169–174.
  19. Morton DJ. The human foot. New York: Hafner University Press; 1964.
  20. Lieberson S, Medes DG. Congenital hallux valgus. Orthopedics. 1991;14(5):588–594. doi: 10.3928/0147-7447-19910501-14
  21. Fabeck LG, Zekhnini C, Farrokh D, et al. Traumatic hallux valgus following rupture of the medial collateral ligament of the first metatarsophalangeal joint: a case report. J Foot Ankle Surg. 2002;41(2):125–128. doi: 10.1016/s1067-2516(02)80037-0
  22. Bohay DR, Johnson KD, Manoli A 2nd. The traumatic bunion. Foot Ankle Int. 1996;17(7):383–387. doi: 10.1177/107110079601700705
  23. Johal S, Sawalha S, Pasapula C. Post-traumatic acute hallux valgus: a case report. Foot (Edinb). 2010;20(2–3):87–89. doi: 10.1016/j.foot.2010.05.001
  24. Louwerens JW, Schrier JC. Rheumatoid forefoot deformity: pathophysiology, evaluation and operative treatment options. Int Orthop. 2013;37(9):1719–1729. EDN: CZOHGK doi: 10.1007/s00264-013-2014-2
  25. Matricali GA, Boonen A, Verduyckt J, et al. The presence of forefoot problems and the role of surgery in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(9):1254–1255. doi: 10.1136/ard.2005.050823
  26. Miller F. Cerebral palsy. Springer; 2005. doi: 10.1007/b138647
  27. Vitenzon AS. Patterns of normal and pathological human walking. Moscow: TsNIIPP; 1998. (In Russ.)
  28. Perry J. Gait analysis: normal and pathological function. New York, 1992.
  29. Holstein A. Hallux valgus: an acquired deformity of the foot in cerebral palsy. Foot Ankle. 1980;1:33–38.
  30. Jenter M, Lipton GE, Miller F. Operative treatment for hallux valgus in children with cerebral palsy. Foot Ankle Int. 1998;19(12):830–835. doi: 10.1177/107110079801901207
  31. Renshaw TS, Sirkin RB, Drennan JC. The management of hallux valgus in cerebral palsy. DMCN. 1979;21(2):202–208. doi: 10.1111/j.1469-8749.1979.tb01602.x
  32. van de Velde SK, Cashin M, Johari R, et al. Symptomatic hallux valgus and dorsal bunion in adolescents with cerebral palsy: clinical and biomechanical factors. Dev Med Child Neurol. 2018;60(6):624–628. doi: 10.1111/dmcn.13724
  33. Bryant A, Tinley P, Singer K. Radiographic measurements and plantar pressure distribution in normal, hallux valgus and hallux limitus feet. Foot. 2000;10(1):18–22. doi: 10.1054/foot.2000.0581
  34. Komeda T, Tanaka Y, Takakura Y, et al. Evaluation of the longitudinal arch of the foot with hallux valgus using a newly developed two-dimensional coordinate system. J Orthop Sci. 2001;6(2):110–118. EDN: ATISIV doi: 10.1007/s007760100056
  35. Mueller MJ, Hastings M, Commean PK, et al. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech. 2003;36(7):1009–1017. doi: 10.1016/s0021-9290(03)00078-2
  36. Martínez-Nova A, Sánchez-Rodríguez R, Pérez-Soriano P, et al. Plantar pressures determinants in mild Hallux Valgus. Gait Posture. 2010;32(3):425–427. doi: 10.1016/j.gaitpost.2010.06.015
  37. Dietze A, Bahlke U, Martin H, Mittlmeier T. First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int. 2013;34(1):124–130. doi: 10.1177/1071100712460217
  38. Galica AM, Hagedorn TJ, Dufour AB, et al. Hallux valgus and plantar pressure loading: the Framingham foot study. J Foot Ankle Res. 2013;6(1):42. EDN: KZWNJX doi: 10.1186/1757-1146-6-42
  39. Blomgren M, Turan I, Agadir M. Gait analysis in hallux valgus. J Foot Surg. 1991;30(1):70–71.
  40. Plank MJ. The pattern of forefoot pressure distribution in hallux valgus. The Foot. 1995;5(1):8–14. doi: 10.1016/0958-2592(95)90026-8
  41. Menz HB, Lord SR. Gait instability in older people with hallux valgus. Foot Ankle Int. 2005;26(6):483–489. doi: 10.1177/107110070502600610
  42. Mickle KJ, Munro BJ, Lord SR, et al. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture. 2011;34(3):347–351. doi: 10.1016/j.gaitpost.2011.05.023
  43. Taranto J, Taranto MJ, Bryant AR, et al. Analysis of dynamic angle of gait and radiographic features in subjects with hallux abducto valgus and hallux limitus. J Am Podiatr Med Assoc. 2007;97(3):175–188. doi: 10.7547/0970175
  44. Glasoe WM, Nuckley DJ, Ludewig PM. Hallux valgus and the first metatarsal arch segment: a theoretical biomechanical perspective. Phys Ther. 2010;90(1):110–120. doi: 10.2522/ptj.20080298
  45. Klugarova J, Janura M, Svoboda Z, et al. Hallux valgus surgery affects kinematic parameters during gait. Clin Biomech. 2016;40:20–26. doi: 10.1016/j.clinbiomech.2016.10.004
  46. Shereff MJ, Bejjani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg Am. 1986;68(3):392–398.
  47. Shimazaki K, Takebe K. Investigations on the origin of hallux valgus by electromyographic analysis. Kobe J Med Sci. 1981;27(4):139–158.
  48. Kozakova J, Janura M, Sos Z, Svoboda Z. Influence of hallux valgus surgery on pelvis and lower extremities movement during gait. Acta Univ Palacki Olomuc Gymn. 2011;41(4):49–54. doi: 10.5507/ag.2011.026
  49. Janura M, Cabell L, Svoboda Z, et al. Kinematic analysis of gait inpatients with juvenile Hallux Valgus deformity. J Biomech Sci Eng. 2008;3(3):390–398. doi: 10.1299/jbse.3.390
  50. Hwang, S, Choi H, Lee K, et al. 3D motion analysis on the Hallux Valgus by using the multisegment foot model. Key Engineering Materials. 2006;321–323:988–991. doi: 10.4028/ href='www.scientific.net/KEM.321-323.988' target='_blank'>www.scientific.net/KEM.321-323.988
  51. Deschamps K, Birch I, Desloovere K, et al. The impact of hallux valgus on foot kinematics: a cross-sectional, comparative study. Gait Posture. 2010;32(1):102–106. EDN: OADHVJ doi: 10.1016/j.gaitpost.2010.03.017
  52. Shereff MJ, Bejani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg. 1986;68(3):392–398.
  53. Church C, Lennon N, Alton R, et al. Longitudinal change in foot posture in children with cerebral palsy. J Child Orthop. 2017;11(3):229–236. doi: 10.1302/1863-2548.11.160197
  54. Min JJ, Kwon SS, Sung KH, et al. Progression of planovalgus deformity in patients with cerebral palsy. BMC Musculoskelet Disord. 2020;21(1):141. EDN: GXVGIV doi: 10.1186/s12891-020-3149-0
  55. Umnov VV, Zharkov DS, Umnov DV, et al. Hallux valgus in children. Biomechanical aspect. Literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(1):101–116. EDN: ULIRLC doi: 10.17816/PTORS626283
  56. Saragas NP, Becker PJ. Comparative radiographic analysis of parameters in feet with and without hallux valgus. Foot Ankle Int. 1995;16(3):139–143. doi: 10.1177/107110079501600306
  57. Kim HW, Park KB, Kwak YH, et al. Radiographic assessment of foot alignment in juvenile hallux valgus and its relationship to flatfoot. Foot Ankle Int. 2019;40(9):1079–1086. doi: 10.1177/1071100719850148
  58. Kenis VM, Dimitrieva AJu, Sapogovskiy AV. The variability of the flatfoot frequency depending on the diagnostic criteria and the method of statistical analysis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(2):41–50. EDN: ZVZAWR doi: 10.17816/PTORS7241-50
  59. Blackwood CB, Yuen TJ, Sangeorzan BJ, et al. The midtarsal joint locking mechanism. Foot Ankle Int. 2005;26(12):1074–1080. doi: 10.1177/107110070502601213
  60. Johnson CH, Christensen JC. Biomechanics of the first ray. Part I. The effects of peroneus longus function: a three-dimensional kinematic study on a cadaver model. J Foot Ankle Surg. 1999;38(5):313–321. doi: 10.1016/s1067-2516(99)80002-7
  61. Shih KS, Chien HL, Lu TW, et al. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait Posture. 2014;40(1):38–42. doi: 10.1016/j.gaitpost.2014.02.011
  62. Levens AS, Inman VT, Blosser JA. Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg Am. 1948;30A(4):859–872.
  63. Mahan KT, Jacko J. Juvenile hallux valgus with compensated metatarsus adductus. Case report. J Am Podiatr Med Assoc. 1991;81(10):525–530. doi: 10.7547/87507315-81-10-525
  64. Steinberg N, Finestone A, Noff M, et al. Relationship between lower extremity alignment and hallux valgus in women. Foot Ankle Int. 2013;34(6):824–831. doi: 10.1177/1071100713478407

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of valgus forces in EPVFD, causing asymmetric loading of the growth plates of the distal and proximal phalanges of the hallux and the first metatarsal bone.

Download (100KB)
3. Fig. 2. Results of pedobarographic studies demonstrating the pressure distribution and ground reaction force projection in patients with hallux valgus. “+,” study results indicating increased load in the designated area; “–,” study results indicating decreased load in the designated area.

Download (164KB)
4. Fig. 3. Alignment of the midfoot and forefoot components during the terminal stance and preswing phases under normal conditions in the frontal (a) and sagittal (b) planes. The red line represents the ground reaction force vector. Supination of the calcaneus and abduction and dorsiflexion of the talus disrupt the alignment of the talonavicular and calcaneocuboid joint axes, thereby blocking motion around the axes of the midtarsal (Chopart) joint. The supinated position of the cuboid bone aggravates the flexion moment at the base of the first metatarsal relative to the base of the second metatarsal, counteracting the dorsiflexion moment caused by the ground reaction force.

Download (276KB)
5. Fig. 4. Terminal stance and preswing phase position of the midfoot and forefoot components in the frontal (a) and sagittal (b) planes in the hallux valgus. The red line represents the ground reaction force vector. Inadequate supination of the hindfoot and midfoot impedes effective resistance to the dorsiflexion torque generated by the ground reaction force acting on the first ray, contributing to its inversion, dorsiflexion, adduction, and supination as well as instability of the medial cuneonavicular joint and the Chopart joint, thereby limiting dorsiflexion at the first metatarsophalangeal joint. Valgus deviation of the hallux may occur as a compensatory mechanism for restricted hallux dorsiflexion.

Download (274KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».