Hallux valgus in equino-planovalgus foot deformity in children with cerebral palsy and its etiopathogenesis: a review (part 1)
- Authors: Umnov V.V.1, Zharkov D.S.1, Novikov V.А.1, Umnov D.V.1
-
Affiliations:
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- Issue: Vol 13, No 1 (2025)
- Pages: 108-117
- Section: Scientific reviews
- URL: https://journals.rcsi.science/turner/article/view/312550
- DOI: https://doi.org/10.17816/PTORS641652
- EDN: https://elibrary.ru/QQUIIK
- ID: 312550
Cite item
Abstract
BACKGROUND: Hallux valgus in children with cerebral palsy is an understudied problem. Treatment approaches are generally applied as a secondary measure, often after the child starts complaining at an older age following correction of contractures and other foot deformities. Moreover, there are no established methods for the early prevention or treatment of hallux valgus. Understanding the fundamental mechanisms of etiopathogenesis and biomechanical disturbances during gait is crucial for developing preventive and therapeutic strategies for this patient population.
AIM: To analyze international studies of foot deformities in children with cerebral palsy and compare these findings with biomechanical studies in patients with idiopathic hallux valgus without neurological pathology.
METHODS: Sixty-four scientific articles and publications retrieved from multiple databases without time restrictions were reviewed.
RESULTS: Equinoplanovalgus foot deformity is a major etiopathogenetic factor in the development of hallux valgus in children with cerebral palsy. Biomechanical alterations associated with hallux valgus are characterized by limited dorsiflexion of the hallux, excessive dorsiflexion of the first ray, restricted supination of the hindfoot and midfoot, and increased plantar flexion of the ankle joint during the terminal stance phase. In equinoplanovalgus deformity, excessive pronation of the hindfoot and midfoot cannot be compensated because of the limited range of motion of the midtarsal joint, causing restricted midfoot supination and the inability to activate the locking mechanisms of the midfoot and forefoot during terminal stance.
CONCLUSION: Any biomechanical disturbance within the complex multisegmental structure of the lower extremity that reduces hindfoot and midfoot supination, causes first ray eversion, and limits hallux dorsiflexion may contribute to deformity. The diversity of motor disorders, contracture patterns, and deformities in children with cerebral palsy indicates the need for further research aimed at identifying the specific factors involved in hallux valgus formation. Such findings may be beneficial for developing preventive and therapeutic strategies for early-stage deformities.
Full Text
##article.viewOnOriginalSite##About the authors
Valery V. Umnov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853
MD, PhD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgDmitriy S. Zharkov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: zds05@mail.ru
ORCID iD: 0000-0002-8027-1593
MD
Russian Federation, Saint PetersburgVladimir А. Novikov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027
MD, PhD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgDmitriy V. Umnov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN-code: 1376-7998
MD, PhD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgReferences
- Lake NC. The problem of hallux valgus. Ann R Coll Surg Engl. 1956;19(1):23–35.
- Seki H, Miura A, Sato N, et al. Correlation between degree of hallux valgus and kinematics in classical ballet: a pilot study. PLoS One. 2020;15(4):e0231015. EDN: SSCZLX doi: 10.1371/journal.pone.0231015
- Nguyen US, Hillstrom HJ, Li W, et al. Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study. Osteoarthritis Cartilage. 2010;18(1):41–46. doi: 10.1016/j.joca.2009.07.008
- Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3:21. EDN: YBRHWN doi: 10.1186/1757-1146-3-21
- Ferrari J, Hopkinson DA, Linney AD. Size and shape differences between male and female foot bones: is the female foot predisposed to hallux abducto valgus deformity? J Am Podiatr Med Assoc. 2004;94(5):434–452. doi: 10.7547/0940434
- Antrobus JN. The primary deformity in hallux valgus and metatarsus primus varus. Clin Orthop Relat Res. 1984;(184):251–255.
- Kilmartin TE, Barrington RL, Wallace WA. A controlled prospective trial of a foot orthosis for juvenile hallux valgus. J Bone Joint Surg Br .1994;49(9):146–148.
- ZaferAtbaşı, Yusuf Erdem, OzkanKose, et al. Relationship between hallux valgus and pes planus: real or fiction? Foot Ankle Surg. 2020;59(3):513–517. EDN: SNOXNB doi: 10.1053/j.jfas.2019.09.037
- Suh DH, Kim HJ, Park JH, et al. Relationship between hallux valgus and pes planus in adult patients. J Foot Ankle Surg. 2021;60(2):297–301. EDN: YHUBXI doi: 10.1053/j.jfas.2020.06.030
- Cacace LA, Hillstrom HJ, Dufour AB, et al. The association between pes planus foot type and the prevalence of foot disorders: the Framingham foot study. Osteoarthritis and Cartilage. 2014;21:166–167. doi: 10.1016/j.joca.2013.02.356
- Coughlin MJ. Roger A. Mann Award. Juvenile hallux valgus: etiology and treatment. Foot Ankle Int. 1995;16(11):682–697. doi: 10.1177/107110079501601104
- Hetherington VJ. Hallux valgus and forefoot surgery. New York: Churchill Livingstone; 1994.
- Arinci Incel N, Genç H, Erdem HR, et al. Muscle imbalance in hallux valgus: an electromyographic study. Am J Phys Med Rehabil. 2003;82(5):345–349. doi: 10.1097/01.PHM.0000064718.24109.26
- Cavalheiro CS, Arcuri MH, Guil VR, et al. Hallux valgus anatomical alterations and its correlation with the radiographic findings. Acta Ortop Bras. 2020;28(1):12–15. EDN: KNOAOH doi: 10.1590/1413-785220202801226897
- Kim PW. Review of anatomical changes in the musculature of the foot as seen in the cadavers study with hallux valgus. FASEB J. 2016;30(1):1043–1047.
- Morton DJ. Hypermobility of the first metatarsal bone: The interlinking factor between metatarsalgia and longitudinal arch strain. J Bone Joint Surg. 1928;10:187–196.
- Klaue K. Hallux valgus – ein Atavismus? Therapeutische Umschau. 2004;61(7):407–412. (In German). doi: 10.1024/0040-5930.61.7.407
- Isidro A, Gonzalez Casanova JC. A glimpse into the evolution of the hallucialtarso-metatarsal joint. Foot Ankle Surg. 2002;8(3):169–174.
- Morton DJ. The human foot. New York: Hafner University Press; 1964.
- Lieberson S, Medes DG. Congenital hallux valgus. Orthopedics. 1991;14(5):588–594. doi: 10.3928/0147-7447-19910501-14
- Fabeck LG, Zekhnini C, Farrokh D, et al. Traumatic hallux valgus following rupture of the medial collateral ligament of the first metatarsophalangeal joint: a case report. J Foot Ankle Surg. 2002;41(2):125–128. doi: 10.1016/s1067-2516(02)80037-0
- Bohay DR, Johnson KD, Manoli A 2nd. The traumatic bunion. Foot Ankle Int. 1996;17(7):383–387. doi: 10.1177/107110079601700705
- Johal S, Sawalha S, Pasapula C. Post-traumatic acute hallux valgus: a case report. Foot (Edinb). 2010;20(2–3):87–89. doi: 10.1016/j.foot.2010.05.001
- Louwerens JW, Schrier JC. Rheumatoid forefoot deformity: pathophysiology, evaluation and operative treatment options. Int Orthop. 2013;37(9):1719–1729. EDN: CZOHGK doi: 10.1007/s00264-013-2014-2
- Matricali GA, Boonen A, Verduyckt J, et al. The presence of forefoot problems and the role of surgery in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(9):1254–1255. doi: 10.1136/ard.2005.050823
- Miller F. Cerebral palsy. Springer; 2005. doi: 10.1007/b138647
- Vitenzon AS. Patterns of normal and pathological human walking. Moscow: TsNIIPP; 1998. (In Russ.)
- Perry J. Gait analysis: normal and pathological function. New York, 1992.
- Holstein A. Hallux valgus: an acquired deformity of the foot in cerebral palsy. Foot Ankle. 1980;1:33–38.
- Jenter M, Lipton GE, Miller F. Operative treatment for hallux valgus in children with cerebral palsy. Foot Ankle Int. 1998;19(12):830–835. doi: 10.1177/107110079801901207
- Renshaw TS, Sirkin RB, Drennan JC. The management of hallux valgus in cerebral palsy. DMCN. 1979;21(2):202–208. doi: 10.1111/j.1469-8749.1979.tb01602.x
- van de Velde SK, Cashin M, Johari R, et al. Symptomatic hallux valgus and dorsal bunion in adolescents with cerebral palsy: clinical and biomechanical factors. Dev Med Child Neurol. 2018;60(6):624–628. doi: 10.1111/dmcn.13724
- Bryant A, Tinley P, Singer K. Radiographic measurements and plantar pressure distribution in normal, hallux valgus and hallux limitus feet. Foot. 2000;10(1):18–22. doi: 10.1054/foot.2000.0581
- Komeda T, Tanaka Y, Takakura Y, et al. Evaluation of the longitudinal arch of the foot with hallux valgus using a newly developed two-dimensional coordinate system. J Orthop Sci. 2001;6(2):110–118. EDN: ATISIV doi: 10.1007/s007760100056
- Mueller MJ, Hastings M, Commean PK, et al. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech. 2003;36(7):1009–1017. doi: 10.1016/s0021-9290(03)00078-2
- Martínez-Nova A, Sánchez-Rodríguez R, Pérez-Soriano P, et al. Plantar pressures determinants in mild Hallux Valgus. Gait Posture. 2010;32(3):425–427. doi: 10.1016/j.gaitpost.2010.06.015
- Dietze A, Bahlke U, Martin H, Mittlmeier T. First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int. 2013;34(1):124–130. doi: 10.1177/1071100712460217
- Galica AM, Hagedorn TJ, Dufour AB, et al. Hallux valgus and plantar pressure loading: the Framingham foot study. J Foot Ankle Res. 2013;6(1):42. EDN: KZWNJX doi: 10.1186/1757-1146-6-42
- Blomgren M, Turan I, Agadir M. Gait analysis in hallux valgus. J Foot Surg. 1991;30(1):70–71.
- Plank MJ. The pattern of forefoot pressure distribution in hallux valgus. The Foot. 1995;5(1):8–14. doi: 10.1016/0958-2592(95)90026-8
- Menz HB, Lord SR. Gait instability in older people with hallux valgus. Foot Ankle Int. 2005;26(6):483–489. doi: 10.1177/107110070502600610
- Mickle KJ, Munro BJ, Lord SR, et al. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture. 2011;34(3):347–351. doi: 10.1016/j.gaitpost.2011.05.023
- Taranto J, Taranto MJ, Bryant AR, et al. Analysis of dynamic angle of gait and radiographic features in subjects with hallux abducto valgus and hallux limitus. J Am Podiatr Med Assoc. 2007;97(3):175–188. doi: 10.7547/0970175
- Glasoe WM, Nuckley DJ, Ludewig PM. Hallux valgus and the first metatarsal arch segment: a theoretical biomechanical perspective. Phys Ther. 2010;90(1):110–120. doi: 10.2522/ptj.20080298
- Klugarova J, Janura M, Svoboda Z, et al. Hallux valgus surgery affects kinematic parameters during gait. Clin Biomech. 2016;40:20–26. doi: 10.1016/j.clinbiomech.2016.10.004
- Shereff MJ, Bejjani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg Am. 1986;68(3):392–398.
- Shimazaki K, Takebe K. Investigations on the origin of hallux valgus by electromyographic analysis. Kobe J Med Sci. 1981;27(4):139–158.
- Kozakova J, Janura M, Sos Z, Svoboda Z. Influence of hallux valgus surgery on pelvis and lower extremities movement during gait. Acta Univ Palacki Olomuc Gymn. 2011;41(4):49–54. doi: 10.5507/ag.2011.026
- Janura M, Cabell L, Svoboda Z, et al. Kinematic analysis of gait inpatients with juvenile Hallux Valgus deformity. J Biomech Sci Eng. 2008;3(3):390–398. doi: 10.1299/jbse.3.390
- Hwang, S, Choi H, Lee K, et al. 3D motion analysis on the Hallux Valgus by using the multisegment foot model. Key Engineering Materials. 2006;321–323:988–991. doi: 10.4028/ href='www.scientific.net/KEM.321-323.988' target='_blank'>www.scientific.net/KEM.321-323.988
- Deschamps K, Birch I, Desloovere K, et al. The impact of hallux valgus on foot kinematics: a cross-sectional, comparative study. Gait Posture. 2010;32(1):102–106. EDN: OADHVJ doi: 10.1016/j.gaitpost.2010.03.017
- Shereff MJ, Bejani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg. 1986;68(3):392–398.
- Church C, Lennon N, Alton R, et al. Longitudinal change in foot posture in children with cerebral palsy. J Child Orthop. 2017;11(3):229–236. doi: 10.1302/1863-2548.11.160197
- Min JJ, Kwon SS, Sung KH, et al. Progression of planovalgus deformity in patients with cerebral palsy. BMC Musculoskelet Disord. 2020;21(1):141. EDN: GXVGIV doi: 10.1186/s12891-020-3149-0
- Umnov VV, Zharkov DS, Umnov DV, et al. Hallux valgus in children. Biomechanical aspect. Literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(1):101–116. EDN: ULIRLC doi: 10.17816/PTORS626283
- Saragas NP, Becker PJ. Comparative radiographic analysis of parameters in feet with and without hallux valgus. Foot Ankle Int. 1995;16(3):139–143. doi: 10.1177/107110079501600306
- Kim HW, Park KB, Kwak YH, et al. Radiographic assessment of foot alignment in juvenile hallux valgus and its relationship to flatfoot. Foot Ankle Int. 2019;40(9):1079–1086. doi: 10.1177/1071100719850148
- Kenis VM, Dimitrieva AJu, Sapogovskiy AV. The variability of the flatfoot frequency depending on the diagnostic criteria and the method of statistical analysis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(2):41–50. EDN: ZVZAWR doi: 10.17816/PTORS7241-50
- Blackwood CB, Yuen TJ, Sangeorzan BJ, et al. The midtarsal joint locking mechanism. Foot Ankle Int. 2005;26(12):1074–1080. doi: 10.1177/107110070502601213
- Johnson CH, Christensen JC. Biomechanics of the first ray. Part I. The effects of peroneus longus function: a three-dimensional kinematic study on a cadaver model. J Foot Ankle Surg. 1999;38(5):313–321. doi: 10.1016/s1067-2516(99)80002-7
- Shih KS, Chien HL, Lu TW, et al. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait Posture. 2014;40(1):38–42. doi: 10.1016/j.gaitpost.2014.02.011
- Levens AS, Inman VT, Blosser JA. Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg Am. 1948;30A(4):859–872.
- Mahan KT, Jacko J. Juvenile hallux valgus with compensated metatarsus adductus. Case report. J Am Podiatr Med Assoc. 1991;81(10):525–530. doi: 10.7547/87507315-81-10-525
- Steinberg N, Finestone A, Noff M, et al. Relationship between lower extremity alignment and hallux valgus in women. Foot Ankle Int. 2013;34(6):824–831. doi: 10.1177/1071100713478407
Supplementary files
