Surgical treatment of knee flexion contracture in patients with cerebral palsy: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Knee flexion contracture is the most common lower limb deformity among patients with cerebral palsy, with a prevalence of 47%–53%. Its prolonged persistence leads to marked functional impairments, such as increased energy expenditure during walking and decreased motor activity in children, and the emergence of secondary orthopedic complications, which significantly affects patients’ quality of life. This review analyzed published scientific data on current surgical methods for the correction of knee flexion contracture in patients with cerebral palsy, evaluating their clinical effectiveness, determining frequency of complications, and identifying factors influencing the choice of optimal treatment strategy. The studies were determined using PubMed, Google Scholar, Cochrane Library, Crossref, and eLibrary. The search was conducted without language restrictions, covering the period from 1952 to 2024. Seventy-four sources were reviewed, including original articles and systematic reviews on surgical treatment of knee flexion contracture in patients with cerebral palsy. The primary surgical correction methods for knee flexion contracture in children with cerebral palsy are hamstring lengthening and distal femoral extension supracondylar osteotomy. Hamstring lengthening is considered the main surgical procedure and most appropriate option for patients of all age groups. Notably, femoral osteotomy has shown high clinical effectiveness in older patients, particularly in those with marked distal femoral deformities. Both methods yield favorable outcomes, but may be associated with certain complications. Furthermore, this review discusses alternative techniques, including tendon transfers and temporary hemiepiphysiodesis, and combined approaches. The conducted scientific data review confirmed the effectiveness of surgical treatment of knee flexion contracture in patients with cerebral palsy. However, in selecting a particular surgical procedure, individual anatomical and clinical features, the degree of contracture, and age-related patient characteristics should be considered.

About the authors

Alina R. Mustafaeva

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: alina.mys23@yandex.ru
ORCID iD: 0009-0003-4108-7317
SPIN-code: 1099-7340

MD

Russian Federation, Saint Petersburg

Vladimir А. Novikov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Valery V. Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853

MD, PhD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

References

  1. Himmelmann K, Uvebrant P. The panorama of cerebral palsy in Sweden. XI. Changing patterns in the birth-year period. Acta Paediatr. 2014;103(6):618–624. doi: 10.1111/apa.12614
  2. Batysheva TT, Guzeva VI, Guzeva OV, Guzeva VV. Improving the availability and quality of medical care and rehabilitation in children with cerebral palsy. Pediatrician (St. Petersburg). 2016;7(1):65–67. doi: 10.17816/PED7165-72 EDN: VXPOWT
  3. Kodaneva LN, Adiyatullina NV. Possibilities of hydro kinesitherapy in the rehabilitation of children with disease of little. Scientific Notes of P.F. Lesgaft University. 2018;(1):122–126. EDN: VVFXRR (In Russ.)
  4. Danilov AA, Balitskaya YL, Motsya MA. Flexion knee contractures in children with cerebral palsy: formation mechanism and clinical course. Pediatric Surgery. 2013;(4):8–15. EDN: RVWPXV (In Russ.)
  5. Rethlefsen SA, Blumstein G, Kay RM, et al. Prevalence of specific gait abnormalities in children with cerebral palsy revisited: influence of age, prior surgery, and gross motor function classification system level. Dev Med Child Neurol. 2017;59(1):79–88. doi: 10.1111/dmcn.13205
  6. Holmes SJ, Mudge AJ, Wojciechowski EA, et al. Impact of multilevel joint contractures of the hips, knees and ankles on the Gait Profile score in children with cerebral palsy. Clin Biomech (Bristol). 2018;59:8–14. doi: 10.1016/j.clinbiomech.2018.08.002
  7. Pettersson K, Wagner P, Rodby-Bousquet E. Development of a risk score for scoliosis in children with cerebral palsy. Acta Orthop. 2020;91(2):203–208. doi: 10.1080/17453674.2020.1711621 EDN: IUQAOR
  8. Miller F. Surgical techniques. In: Cerebral Palsy. New York: Springer; 2005. P. 374–1024.
  9. Cloodt E, Lindgren A, Lauge-Pedersen H, Rodby-Bousquet E. Sequence of flexion contracture development in the lower limb: a longitudinal analysis of 1,071 children with cerebral palsy. BMC Musculoskelet Disord. 2022;23(1):629. doi: 10.1186/s12891-022-05548-7 EDN: BLJKDT
  10. Hof AL. Changes in muscles and tendons due to neural motor disorders: implications for therapeutic intervention. Neural Plast. 2001;8(1-2):71–81. doi: 10.1155/NP.2001.71
  11. EGGERS GW. Transplantation of hamstring tendons to femoral condyles in order to improve hip extension and to decrease knee flexion in cerebral spastic paralysis. J Bone Joint Surg Am. 1952;34(4):827–830.
  12. Umnov VV. The main approaches to the knee joint stabilization in patients with cerebral palsy. Traumatology and Orthopedics of Russia. 2013;(3):119–124. doi: 10.21823/2311-2905-2013--3-119-124 EDN: REOUWH
  13. Pollock GA. Surgical treatment of cerebral palsy. J Bone Joint Surg Br. 1962;44-B:68–81. doi: 10.1302/0301-620X.44B1.68
  14. Evans EB, Julian JD. Modifications of the hamstring transfer. Dev Med Child Neurol. 1966;8(5):539–551. doi: 10.1111/j.1469-8749.1966.tb01800.x
  15. Reimers J. Contracture of the hamstrings in spastic cerebral palsy. A study of three methods of operative correction. J Bone Joint Surg Br. 1974;56(1):102–109.
  16. Selber P, Kerr Graham H, Gage J, et al. Comparison of hamstring lengthening with hamstring lengthening plus transfer for the treatment of flexed knee gait in ambulatory patients with cerebral palsy. J Child Orthop. 2012;6(6):513–514. doi: 10.1007/s11832-012-0445-8
  17. Sung KH, Chung CY, Lee KM, et al. Long term outcome of single event multilevel surgery in spastic diplegia with flexed knee gait. Gait Posture. 2013;37(4):536–541. doi: 10.1016/j.gaitpost.2012.09.011
  18. De Mattos C, Patrick Do K, Pierce R, et al. Comparison of hamstring transfer with hamstring lengthening in ambulatory children with cerebral palsy: further follow-up. J Child Orthop. 2014;8(6):513–520. doi: 10.1007/s11832-014-0626-8
  19. Dreher T, Vegvari D, Wolf SI, et al. Development of knee function after hamstring lengthening as a part of multilevel surgery in children with spastic diplegia: a long-term outcome study. J Bone Joint Surg Am. 2012;94(2):121–130. doi: 10.2106/JBJS.J.00890
  20. Woratanarat P, Dabney KW, Miller F. Knee capsulotomy for fixed knee flexion contracture. Acta Orthop Traumatol Turc. 2009;43(2):121–127. doi: 10.3944/AOTT.2009.121
  21. Mansour T, Derienne J, Daher M, et al. Is percutaneous medial hamstring myofascial lengthening as anatomically effective and safe as the open procedure? J Child Orthop. 2017;11(1):15–19. doi: 10.1302/1863-2548-11-160175
  22. Kay RM, Mccarthy J, Narayanan U, et al. Finding consensus for hamstring surgery in ambulatory children with cerebral palsy using the Delphi method. J Child Orthop. 2022;16(1):55–64. doi: 10.1177/18632521221080474 EDN: KLYGRT
  23. Chang WN, Tsirikos AI, Miller F, et al. Distal hamstring lengthening in ambulatory children with cerebral palsy: primary versus revision procedures. Gait Posture. 2004;19(3):298–304. doi: 10.1016/S0966-6362(03)00070-5
  24. Kay RM, Rethlefsen AS, Skaggs D, et al. Outcome of medial versus combined medial and lateral hamstring lengthening surgery in cerebral palsy. J Pediatr Orthop. 2002;22(2):169–172. doi: 10.1097/01241398-200203000-00006
  25. Nazareth A, Rethlefsen S, Sousa TC, et al. Percutaneous hamstring lengthening surgery is as effective as open lengthening in children with cerebral palsy. J Pediatr Orthop. 2019;39(7):366–371. doi: 10.1097/BPO.0000000000000924
  26. Haberfehlner H, Jaspers RT, Rutz E, et al. Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study. PLoS One. 2018;13(2):e0192573. doi: 10.1371/journal.pone.0192573
  27. Bekmez Ş, Yatağanbaba A, Yılmaz G, et al. Aponeurotic release of semimembranosus: A technical note to increase correction gained with hamstring lengthening surgery in cerebral palsy. Acta Orthop Traumatol Turc. 2021;55(2):177–180. doi: 10.5152/j.aott.2021.20184 EDN: HYRNCR
  28. Damron TA, Breed AL, Cook T. Diminished knee flexion after hamstring surgery in cerebral palsy patients: prevalence and severity. J Pediatr Orthop. 1993;13(2):188–191.
  29. Bozinovski Z, Popovski N. Operative treatment of the knee contractures in cerebral palsy patients. Med Arch. 2014;68(3):182–183. doi: 10.5455/medarh.2014.68.182-183
  30. Khaje Mozafari J, Pisoudeh K, Gharanizade K, Abolghasemian M. Percutaneous versus open hamstring lengthening in spastic diplegic cerebral palsy. Arch Bone Jt Surg. 2019;7(4):373–378.
  31. Thompson N, Stebbins J, Seniorou M, et al. The use of minimally invasive techniques in multi-level surgery for children with cerebral palsy: preliminary results. J Bone Joint Surg Br. 2010;92(10):1442–1448. doi: 10.1302/0301-620X.92B10.24307
  32. Hachache B, Eid T, Ghosn E, et al. Is percutaneous proximal gracilis tenotomy as effective and safe as the open procedure? J Child Orthop. 2015;9(6):477–481. doi: 10.1007/s11832-015-0699-z
  33. Seniorou M, Thompson N, Harrington M, Theologis T. Recovery of muscle strength following multi-level orthopaedic surgery in diplegic cerebral palsy. Gait Posture. 2007;26(4):475–481. doi: 10.1016/j.gaitpost.2007.07.008
  34. Amen J, Elgebeily M, El-Mikkawy DME, et al. Single-event multilevel surgery for crouching cerebral palsy children: Correlations with quality of life and functional mobility. J Musculoskelet Surg Res. 2018;2(4):148–155. doi: 10.4103/jmsr.jmsr_48_18
  35. Ma N, Gould D, Camathias C, et al. Single-event multi-level surgery in cerebral palsy: A Bibliometric Analysis. Medicina (Kaunas). 2023;59(11):1922. doi: 10.3390/medicina59111922 EDN: QHUUXB
  36. Umkhanov HA. System of orthopedic-surgical treatment of children with cerebral palsy. [Dissertation]. Leningrad; 1985. 35 p. (In Russ.)
  37. Popkov DA, Zmanovskaya VA, Gubina EB, et al. The results of single-event multilevel orthopedic surgeries and the early rehabilitation used in complex with botulinum toxin treatment in patients with spastic forms of cerebral palsy. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(4):41–48. doi: 10.17116/jnevro20151154141-48 EDN: UKQVMF
  38. Beals RK. Treatment of knee contracture in cerebral palsy by hamstring lengthening, posterior capsulotomy, and quadriceps mechanism shortening. Dev Med Child Neurol. 2001;43(12):802–805. doi: 10.1017/s0012162201001451
  39. Al-Aubaidi Z, Lundgaard B, Pedersen NW. Anterior distal femoral hemiepiphysiodesis in the treatment of fixed knee flexion contracture in neuromuscular patients. J Child Orthop. 2012;6(4):313–318. doi: 10.1007/s11832-012-0415-1
  40. Long JT, Cobb L, Garcia MC, McCarthy JJ. Improved clinical and functional outcomes in crouch gait following minimally invasive hamstring lengthening and serial casting in children with cerebral palsy. J Pediatr Orthop. 2020;40(6):e510–e515. doi: 10.1097/BPO.0000000000001437
  41. Westberry DE, Davids JR, Jacobs JM, et al. Effectiveness of serial stretch casting for resistant or recurrent knee flexion contractures following hamstring lengthening in children with cerebral palsy. J Pediatr Orthop. 2006;26(2):109–114. doi: 10.1097/01.bpo.0000187990.71645.ae
  42. Salami F, Brosa J, Van Drongelen S, et al. Long-term muscle changes after hamstring lengthening in children with bilateral cerebral palsy. Dev Med Child Neurol. 2019;61(7):791–797. doi: 10.1111/dmcn.14097
  43. Damiano DL, Abel MF, Pannunzio M, Romano JP. Interrelationships of strength and gait before and after hamstrings lengthening. J Pediatr Orthop. 1999;19(3):352–358. doi: 10.1097/01241398-199905000-00013
  44. Zherdev KV, Chelpachenko OB, Unanyan KK, et al. Neuroorthopedic aspects of the surgical treatment of locomotor disorders in the lower extremities associated with spastic diplegia in children with infantile cerebral palsy. Russian Journal of Pediatric Surgery. 2015;19(4):8–13. EDN: UFGSFP
  45. Park H, Park BK, Park KB, et al. Distal femoral shortening osteotomy for severe knee flexion contracture and crouch gait in cerebral palsy. J Clin Med. 2019;8(9):1354. doi: 10.3390/jcm8091354
  46. Kramer A, Stevens PM. Anterior femoral stapling. J Pediatr Orthop. 2001;21:804–807.
  47. Klatt J, Stevens PM. Guided growth for fixed knee flexion deformity. J Pediatr Orthop. 2008;28(6):626–631. doi: 10.1097/BPO.0b013e318183d573
  48. Stiel N, Babin K, Vettorazzi E, et al. Anterior distal femoral hemiepiphysiodesis can reduce fixed flexion deformity of the knee: a retrospective study of 83 knees. Acta Orthop. 2018;89(5):555–559. doi: 10.1080/17453674.2018.1485418
  49. Kay RM, Rethlefsen SA. Anterior percutaneous hemiepiphysiodesis of the distal aspect of the femur: A new technique. JBJS Case Connect. 2015;5(4):e95. doi: 10.2106/JBJS.CC.O.00057
  50. Journeau P. Update on guided growth concepts around the knee in children. Orthop Traumatol Surg Res. 2019;105(1S):S171–S180. doi: 10.1016/j.otsr.2019.04.025 EDN: RFDEOA
  51. Bleck EE. Orthopaedic Management in Cerebral Palsy. Philadelphia: Lippincott; 1987. 497 p.
  52. Rutz E, Novacheck TF, Dreher T, et al. Distal femoral extension osteotomy and patellar tendon advancement or shortening in ambulatory children with cerebral palsy: A modified Delphi consensus study and literature review. J Child Orthop. 2022;16(6):442–453. doi: 10.1177/18632521221137391 EDN: KWNUBO
  53. De Morais Filho MC, Neves DL, Abreu FP, et al. Treatment of fixed knee flexion deformity and crouch gait using distal femur extension osteotomy in cerebral palsy. J Child Orthop. 2008;2(1):37–43. doi: 10.1007/s11832-007-0073-x
  54. Stout JL, Gage JR, Schwartz MH, Novacheck TF. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J Bone Joint Surg Am. 2008;90(11):2470-2484. doi: 10.2106/JBJS.G.00327
  55. Nabian MH, Zadegan SA, Mallet C, et al. Distal femoral osteotomy and patellar tendon advancement for the treatment of crouch gait in patients with bilateral spastic cerebral palsy. Gait Posture. 2024;110:53–58. doi: 10.1016/j.gaitpost.2024.02.019 EDN: GNQHFE
  56. Salami F, Wagner J, van Drongelen S, et al. Mid-term development of hamstring tendon length and velocity after distal femoral extension osteotomy in children with bilateral cerebral palsy: a retrospective cohort study. Dev Med Child Neurol. 2018;60(8):833–838. doi: 10.1111/dmcn.13739
  57. Klotz MCM, Hirsch K, Heitzmann D, et al. Distal femoral extension and shortening osteotomy as a part of multilevel surgery in children with cerebral palsy. World J Pediatr. 2017;13(4):353–359. doi: 10.1007/s12519-016-0086-y EDN: KYSSEG
  58. Geisbüsch A, Klotz MCM, Putz C, et al. Mid-term results of distal femoral extension and shortening osteotomy in treating flexed knee gait in children with cerebral palsy. Children (Basel). 2022;9(10):1427. doi: 10.3390/children9101427 EDN: EKTCYJ
  59. Erdal OA, Gorgun B, Sarikaya IA, Inan M. Intraoperative neuromonitoring during distal femoral extension osteotomy in children with cerebral palsy. J Pediatr Orthop B. 2022;31(2):194–201. doi: 10.1097/BPB.0000000000000882 EDN: AJQGSG
  60. Zimmerman MH, Smith CF, Oppenheim WL. Supracondylar femoral extension osteotomies in the treatment of fixed flexion deformity of the knee. Clin Orthop Relat Res. 1982;(171):87–93. doi: 10.1097/00003086-198211000-00015
  61. Rutz E, Gaston MS, Camathias C, Brunner R. Distal femoral osteotomy using the LCP pediatric condylar 90-degree plate in patients with neuromuscular disorders. J Pediatr Orthop. 2012;32(3):295–300. doi: 10.1097/BPO.0b013e31824b29d7
  62. Ezzat A, Iobst C. Extreme femoral valgus and patella dislocation following lateral plate fixation of a pediatric femur fracture. J Pediatr Orthop B. 2016;25(4):381–384. doi: 10.1097/BPB.0000000000000289
  63. Liou YL, Lee WC, Kao HK, et al. Genu valgum after distal femur extension osteotomy in children with cerebral palsy. J Pediatr Orthop. 2022;42(4):384–389. doi: 10.1097/BPO.0000000000002076 EDN: IRBSMW
  64. Novacheck TF, Stout JL, Gage JR, Schwartz MH. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J Bone Joint Surg Am. 2009;91(2):271–286. doi: 10.2106/JBJS.I.00316
  65. Kharchenko SS, Guseva NA, Lobanov MN, et al. Bone mineral density in children with cerebral palsy after reconstructive hip surgery. Osteoporosis and Bone Diseases. 2016;19(2):99. (In Russ.) doi: 10.14341/osteo2016299-99 EDN: XSCOUH
  66. Kenis VM, Bogdanova SL, Prokopenko TN, et al. Bone metabolism biomarkers in walking children with cerebral palsy. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(4):79–86. doi: 10.17816/PTORS7479-86 EDN: KQATGM
  67. Akhter N, Khan AA, Ayyub A. Motor impairment and skeletal mineralization in children with cerebral palsy. J Pak Med Assoc. 2017;67(2):200–203.
  68. Yıldırım E, Sarıkaya İA, İnan M. Unusual entrapment of deep peroneal nerve after femoral distal extension osteotomy. J Pediatr Orthop B. 2015;24(5):440–443. doi: 10.1097/BPB.0000000000000167
  69. Goudriaan M, Nieuwenhuys A, Schless SH, et al. A new strength assessment to evaluate the association between muscle weakness and gait pathology in children with cerebral palsy. PLoS One. 2018;13(1):e0191097. doi: 10.1371/journal.pone.0191097
  70. Noble JJ, Fry N, Lewis AP, et al. Bone strength is related to muscle volume in ambulant individuals with bilateral spastic cerebral palsy. Bone. 2014;66:251–255. doi: 10.1016/j.bone.2014.06.028
  71. Pelrine E, Novacheck T, Boyer E. Association of knee pain and crouch gait in individuals with cerebral palsy. J Pediatr Orthop. 2020;40(6):e504–e509. doi: 10.1097/BPO.0000000000001487
  72. Vuillermin C, Rodda J, Rutz E, et al. Severe crouch gait in spastic diplegia can be prevented: a population based study. J Bone Joint Surg Br. 2011;93(12):1670–1675. doi: 10.1302/0301-620X.93B12.27332
  73. Boyer ER, Stout JL, Laine JC, et al. Long-term outcomes of distal femoral extension osteotomy and patellar tendon advancement in individuals with cerebral palsy. J Bone Joint Surg Am. 2018;100(1):31–41. doi: 10.2106/JBJS.17.00480 EDN: VIRNFV
  74. Aroojis A, Patel M, Shah A, et al. Distal femoral extension osteotomy with 90° pediatric condylar locking compression plate and patellar tendon advancement for the correction of crouch gait in cerebral palsy. Indian J Orthop. 2019;53(1):45–52. doi: 10.4103/ortho.IJOrtho_410_17 EDN: BEAYGH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 2. Stages of the surgical technique of lengthening the flexors of the lower leg: a - access to the medial and lateral groups of the flexor tendons of the lower leg; b - lengthening the medial and lateral groups of tendons: 1 - tenotomy of the gracilis muscle, 2 - tenotomy of the semimembranosus muscle, 3 - tenotomy of the semitendinosus muscle, 4 - tenotomy of the biceps femoris; c - diagram of Z-shaped lengthening of the medial group: 5 - Z-shaped lengthening of the semitendinosus muscle.

Download (301KB)
3. Fig. 3. X-rays of the knee joint with temporary hemiepiphysiodesis of the anterior femur: a - lateral projection of the knee joint; b - direct projection of the knee joint.

Download (173KB)
4. Fig. 4. Lateral radiographs of the patient's knee joint: a — preoperative radiograph with flexion contracture of the knee joint, the value of which is 30°; b — postoperative radiograph after corrective supracondylar extension-shortening osteotomy of the femur. The arrow indicates the angular deformity of the distal femur.

Download (92KB)
5. Fig. 1. Mechanism of knee flexion contracture development in patients with cerebral palsy.

Download (158KB)

Copyright (c) 2025 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».