Use of autologous mesenchymal stem cells derived from adipose tissue for the treatment of hyaline cartilage defects in laboratory animals: a literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Degenerative/dystrophic cartilage diseases are an epidemiologically important challenge in modern traumatology and orthopedics. The use of autologous mesenchymal stem cells to repair cartilage defects is currently the most promising treatment option.

AIM: The aim of this paper was to review the literature on the use of adipose tissue-derived mesenchymal stem cells to repair articular cartilage defects in laboratory animals.

MATERIALS AND METHODS: Recent and historical Russian and English literature was searched in Google Scholar, Cyberleninka, PubMed, eLibrary, Mendeley, Science Direct databases for over 20 years. A total of 113 papers were selected, and 25 papers that met the inclusion criteria were selected based on full-text materials and abstracts.

RESULTS: Literature shows that autologous adipose-derived mesenchymal stem cells stimulate hyaline cartilage regeneration. The vast majority of studies show that the addition of both differentiated and undifferentiated cells accelerates cartilage repair, regardless of the composition of the vehicle matrix or gel. Adipose-derived mesenchymal stem cells can also be used as a stand-alone technology without any vehicles.

CONCLUSIONS: There is still no ideal graft to restore cartilage tissue, despite a wide range of technologies, surgical techniques and materials for repairing cartilage defects. However, mesenchymal stem cells improve the rate of defect repair and may become a new therapeutic strategy for degenerative/dystrophic cartilage diseases.

About the authors

Polina A. Pershina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
SPIN-code: 2484-9463

MD, PhD Student

Russian Federation, Saint Petersburg

Yuri A. Novosad

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University

Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN-code: 3001-1467

MD, PhD Student

Russian Federation, Saint Petersburg; Saint Petersburg

Kristina N. Rodionova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University

Email: rkn0306@mail.ru
ORCID iD: 0000-0001-6187-2097
SPIN-code: 4627-3979
Russian Federation, Saint Petersburg; Saint Petersburg

Marat S. Asadulaev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Vyacheslav I. Zorin

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: traumaturner@yandex.ru
ORCID iD: 0000-0002-9712-5509
SPIN-code: 4651-8232

MD, PhD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Pavel I. Bortulev

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: pavel.bortulev@yandex.ru
ORCID iD: 0000-0003-4931-2817
SPIN-code: 9903-6861

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Sergey V. Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of the RAS

Russian Federation, Saint Petersburg

References

  1. Runhaar J. Development and prevention of knee osteoarthritis: the load of obesity. Rotredame: Erasmus university; 2013. Available from: https://core.ac.uk/download/pdf/18511861.pdf
  2. Ezhov MY, Ezhov IY, Kashko AK, et al. Unresolved issues of the cartilage and the bone regeneration (review). Advances in current natural sciences. 2015;(5):126–131. (In Russ.) EDN: UCMJHT
  3. Xu Y, Jiang Y, Xia C, et al. Stem cell therapy for osteonecrosis of femoral head: opportunities and challenges. Regen Ther. 2020;15:295–304. doi: 10.1016/j.reth.2020.11.003
  4. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–895. doi: 10.1056/nejm199410063311401
  5. Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78(3):188–198. doi: 10.1016/j.maturitas.2014.04.017
  6. Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess (Rockv). 2017;21(6):1–294. doi: 10.3310/hta21060
  7. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow. Transplantation. 1968;6(2):230–247. doi: 10.1097/00007890-196803000-00009
  8. Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10. doi: 10.1002/stem.556
  9. Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33(29):7008–7018. doi: 10.1016/j.biomaterials.2012.06.058
  10. Steck E, Bertram H, Abel R, et al. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells. 2005;23(3):403–411. doi: 10.1634/stemcells.2004-0107
  11. Peláez P, Damiá E, Torres-Torrillas M, et al. Cell and cell free therapies in osteoarthritis. Biomedicines. 2021;9(11):1726. doi: 10.3390/biomedicines9111726
  12. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105
  13. Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi: 10.1634/stemcells.2005-0342
  14. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905
  15. Anraku Y, Mizuta H, Sei A, et al. The chondrogenic repair response of undifferentiated mesenchymal cells in rat full-thickness articular cartilage defects. Osteoarthr Cartil. 2008;16(8):961–964. doi: 10.1016/j.joca.2007.12.009
  16. Wang W, He N, Feng C, et al. Human adipose-derived mesenchymal progenitor cells engraft into rabbit articular cartilage. Int J Mol Sci. 2015;16(6):12076–12091. doi: 10.3390/ijms160612076
  17. Brindo da Cruz IC, Velosa AP, Carrasco S, et al. Post-adipose-derived stem cells (ADSC) stimulated by collagen type V (Col V) mitigate the progression of osteoarthritic rabbit articular cartilage. Front Cell Dev Biol. 2021;9:606890. doi: 10.3389/fcell.2021.606890
  18. Ude CC, Sulaiman SB, Min-Hwei N, et al. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PLoS One. 2014;9(6):e98770. doi: 10.1371/journal.pone.0098770
  19. Desando G, Cavallo C, Sartoni F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013;15:1–16. doi: 10.1186/ar4156
  20. Ahmad MR, Badar W, Ullah Khan MA, et al. Combination of preconditioned adipose-derived mesenchymal stem cells and platelet-rich plasma improves the repair of osteoarthritis in rat. Regen Med. 2020;15(11):2285–2295. doi: 10.2217/rme-2020-0040
  21. Hsu YK, Sheu SY, Wang CY, et al. The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model. Knee. 2018;25(6):1181–1191. doi: 10.1016/j.knee.2018.10.005
  22. Kuroda K, Kabata T, Hayashi K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord. 2015;16(1). doi: 10.1186/s12891-015-0701-4
  23. Fu Q, Zhou R, Cao J, et al. Culture of mesenchymal stem cells derived from the infrapatellar fat pad without enzyme and preliminary study on the repair of articular cartilage defects in rabbits. Front Bioeng Biotechnol. 2022;10:889306. doi: 10.3389/fbioe.2022.889306
  24. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52(1):443–451. doi: 10.1146/annurev.med.52.1.443
  25. Vannini F, Filardo G, Kon E, et al. Scaffolds for cartilage repair of the ankle joint: the impact on surgical practice. Foot Ankle Surg. 2013;19(1):2–8. doi: 10.1016/j.fas.2012.07.001
  26. Chang SCN, Rowley JA, Tobias G, et al. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res. 2001;55(4):503–511. doi: 10.1002/1097-4636(20010615)55:4<503::aid-jbm1043>3.0.co;2-s
  27. Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater. 2022;34(2):2103691. doi: 10.1002/adma.202103691
  28. Hung CT, Lima EG, Mauck RL, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech. 2003;36(12):1853–1864. doi: 10.1016/s0021-9290(03)00213-6
  29. Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376(9739):440–448. doi: 10.1016/s0140-6736(10)60668-x
  30. Yang Z, Li H, Tian Y, et al. Biofunctionalized structure and ingredient mimicking scaffolds achieving recruitment and chondrogenesis for staged cartilage regeneration. Front Cell Dev Biol. 2021;9:655440. doi: 10.3389/fcell.2021.655440
  31. Yang ZG, Tang RF, Qi YY, et al. Restoration of cartilage defects using a superparamagnetic iron oxide-labeled adipose-derived mesenchymal stem cell and TGF-β3-loaded bilayer PLGA construct. Regen Med. 2020;16(6):1735–1747. doi: 10.2217/rme-2019-0151
  32. Lee Y-H, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013;18(3):355–367. doi: 10.1016/j.cmet.2013.08.003
  33. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–648. doi: 10.1016/j.jcyt.2013.02.006
  34. Desando G, Bartolotti I, Martini L, et al. Regenerative features of adipose tissue for osteoarthritis treatment in a rabbit model: enzymatic digestion versus mechanical disruption. Int J Mol Sci. 2019;20(11):2636. doi: 10.3390/ijms20112636
  35. Chen Z, Ge Y, Zhou L, et al. Pain relief and cartilage repair by Nanofat against osteoarthritis: preclinical and clinical evidence. Stem Cell Res Ther. 2021;12(1):477. doi: 10.1186/s13287-021-02538-9
  36. Ge Y, Xu W, Chen Z, et al. Nanofat lysate ameliorates pain and cartilage degradation of osteoarthritis through activation of TGF-β–Smad2/3 signaling of chondrocytes. Front Pharmacol. 2023;14:900205. doi: 10.3389/fphar.2023.900205
  37. Li Q, Zhao F, Li Z, et al. Autologous fractionated adipose tissue as a natural biomaterial and novel one-step stem cell therapy for repairing articular cartilage defects. Front Cell Dev Biol. 2020;8:694. doi: 10.3389/fcell.2020.00694
  38. Upchurch DA, Renberg WC, Roush JK, et al. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am J Vet Res. 2016;77(9):940–951. doi: 10.2460/ajvr.77.9.940
  39. Ba K, Ni D, Wang XB, et al. Chondrocyte cocultures with stromal vascular fraction of adipose tissue promote cartilage regeneration in vivo. Hua Xi Kou Qiang Yi Xue Za Zhi. 2020;38(3):240–244. doi: 10.7518/hxkq.2020.03.002
  40. Go G, Jeong SG, Yoo A, et al. Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci Robot. 2020;5(38):eaay6626. doi: 10.1126/scirobotics.aay6626

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study design scheme. MSCs, mesenchymal stem cells; SVF, stromal vascular fraction

Download (150KB)

Copyright (c) 2024 Эко-Вектор

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».