Anatomy and biomechanics of posterolateral angle structures of the knee joint

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Structural injuries of the posterolateral angle of the knee are rare. However, these conditions are characterized by high-energy etiologic mechanisms and cause rapidly progressive degenerative processes in the knee joint. There is currently no consensus on the need for reconstructing damaged posterolateral angle structures for effective knee stabilization with surgery. Understanding the effects of anatomical elements of the posterolateral angle on posterolateral knee rotational instability is of theoretical and practical importance.

AIM: The aim of this study was to evaluate anatomy and morphometry of the popliteal tendon and the fibular collateral ligament, including their zones of attachment to the femur and the role of these structures in the posterolateral rotational and frontal instability of the knee joint.

MATERIALS AND METHODS: A single-center comprehensive topographic and anatomical study used 50 unfixed anatomical specimens of the lower extremities (30 females, 20 males). The mean age was 30 to 60 years. Patients died from causes other than musculoskeletal disorders. Precise dissection of the posterolateral angle components (popliteus tendon and peroneal collateral ligament) was performed with detailed examination and documentation of the morphometric characteristics of the femoral attachment sites of the studied structures. The posterolateral angle structures were then sequentially dissected to determine their effect on posterolateral rotational instability and tibial varus deviation (varus stress test) and posterior tibial translation (posterior drawer test).

RESULTS: After dissection of the fibular collateral ligament, the maximum varus deviation of the knee joint was 5° ± 3.0°. A more significant external rotation of the tibia of 11.0° ± 1.5° was achieved after popliteal tendon release. The intersection of the posterior cruciate ligament resulted in a maximum posterior tibial displacement relative to the femur by 9 (7.9–10.2) mm.

CONCLUSIONS: This study evaluated in detail the anatomy and function of the posterolateral angle structures of the knee joint. The results obtained highlight the leading role of the popliteal tendon in the pathogenesis of posterolateral rotational instability and the fibular collateral ligament in the pathogenesis of the frontal (varus) instability of the knee joint, which is of great importance for the diagnosis and surgical treatment of these types of knee instability.

About the authors

Marsel R. Salikhov

Vreden National Medical Center for Traumatology and Orthopedics

Email: virus-007-85@mail.ru
ORCID iD: 0000-0002-5706-481X
SPIN-code: 2009-4349

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Vladislav V. Avramenko

Saint Petersburg State Pediatric Medical University

Email: avramenko.spb@mail.ru
ORCID iD: 0000-0003-0339-6066
SPIN-code: 4632-9953
Russian Federation, Saint Petersburg

Gleb E. Batalov

Vreden National Medical Center for Traumatology and Orthopedics

Author for correspondence.
Email: Batalovgl@yandex.ru
ORCID iD: 0009-0006-5266-8530
Russian Federation, Saint Petersburg

Ekaterina V. Sannikova

Vreden National Medical Center for Traumatology and Orthopedics

Email: sannikovaekaterina@rambler.ru
ORCID iD: 0000-0002-9171-1697
SPIN-code: 2715-4820

MD, PhD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

References

  1. Kennedy NI, LaPrade CM, LaPrade RF. Surgical management and treatment of the anterior cruciate ligament/posterolateral corner injured knee. Clin Sports Med. 2017;36(1):105–117. doi: 10.1016/j.csm.2016.08.011
  2. Drenck T, Domnick C, Herbort M, et al. Kinematics of the posterolateral corner of the knee: a human cadaveric cutting study. Orthop J Sports Med. 2017;5(4):2325967117S00136. doi: 10.1177/2325967117S00136
  3. Zantop T, Schumacher T, Diermann N, et al. Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006. Arch Orthop Trauma Surg. 2007;127(9):743–752. doi: 10.1007/s00402-006-0241-3
  4. LaPrade RF, Bollom TS, Wentorf FA, et al. Mechanical properties of the posterolateral structures of the knee. Am J Sports Med. 2005;33(9):1386–1391. doi: 10.1177/0363546504274143
  5. Westrich GH, Hannafin JA, Potter HG. Isolated rupture and repair of the popliteus tendon. Arthroscopy. 1995;11(5):628–632. doi: 10.1016/0749-8063(95)90145-0
  6. DeLee JC, Riley MB, Rockwood CA Jr. Acute posterolateral rotatory instability of the knee. Am J Sports Med. 1983;11(4):199–207. doi: 10.1177/036354658301100403
  7. LaPrade RF, Wentorf FA, Fritts H, et al. A prospective magnetic resonance imaging study of the incidence of posterolateral and multiple ligament injuries in acute knee injuries presenting with a hemarthrosis. Arthroscopy. 2007;23(12):1341–1347. doi: 10.1016/j.arthro.2007.07.024
  8. Jacobson KE. Technical pitfalls of collateral ligament surgery. Clin Sports Med. 1999;18(4):847–882. doi: 10.1016/s0278-5919(05)70188-5
  9. LaPrade RF, Johansen S, Wentorf FA, et al. An analysis of an anatomical posterolateral knee reconstruction: an in vitro biomechanical study and development of a surgical technique. Am J Sports Med. 2004;32(6):1405–1414. doi: 10.1177/0363546503262687
  10. Lee MC, Park YK, Lee SH, et al. Posterolateral reconstruction using split Achilles tendon allograft. Arthroscopy. 2003;19(9):1043–1049. doi: 10.1016/j.arthro.2003.09.037
  11. Kim SJ, Park IS, Cheon YM, et al. New technique for chronic posterolateral instability of the knee: posterolateral reconstruction using the tibialis posterior tendon allograft. Arthroscopy. 2004;20(Suppl 2):195–200. doi: 10.1016/j.arthro.2004.04.042
  12. Verma NN, Mithöfer K, Battaglia M, et al. The docking technique for posterolateral corner reconstruction. Arthroscopy. 2005;21(2):238–242. doi: 10.1016/j.arthro.2004.09.030
  13. Marshall JL, Rubin RM. Knee ligament injuries – a diagnostic and therapeutic approach. Orthop Clin North Am. 1977;8(3):641–668. doi: 10.1016/S0030-5898(20)30681-7
  14. Pasque C, Noyes FR, Gibbons M, et al. The role of the popliteofibular ligament and the tendon of popliteus in providing stability in the human knee. J Bone Joint Surg Br. 2003;85(2):292–298. doi: 10.1302/0301-620X.85B2.12857
  15. Wentorf FA, LaPrade RF, Lewis JL, et al. The influence of the integrity of posterolateral structures on tibiofemoral orientation when an anterior cruciate ligament graft is tensioned. Am J Sports Med. 2002;30(6):796–799. doi: 10.1177/03635465020300060701
  16. Strauss MJ, Varatojo R, Boutefnouchet T, et al. The use of allograft tissue in posterior cruciate, collateral and multi-ligament knee reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(6):1791–1809. doi: 10.1007/s00167-019-05426-1
  17. Domnick C, Frosch KH, Raschke MJ, et al. Kinematics of different components of the posterolateral corner of the knee in the lateral collateral ligament-intact state: a human cadaveric study. Arthroscopy. 2017;33(10):1821–1830.e1. doi: 10.1016/j.arthro.2017.03.035
  18. Olewnik Ł, Gonera B, Kurtys K, et al. A proposal for a new classification of the fibular (lateral) collateral ligament based on morphological variations. Ann Anat. 2019;222:1–11. doi: 10.1016/j.aanat.2018.10.009
  19. Sobrado MF, Helito CP, Melo LDP, et al. Anatomical study of the posterolateral ligament complex of the knee: LCL and popliteus tendon. Acta Ortop Bras. 2021;29(5):249–252. doi: 10.1590/1413-785220212905241252

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Topography of the posterolateral corner structures. Specimen of the left knee joint, lateral view: 1, fibular collateral ligament (FCL) attachment zone on the femur; 2, popliteus tendon (PT) attachment zone on the femur; LMFC, lateral femoral condyle

Download (119KB)
3. Fig. 2. Example of measurements of attachment zones in the posterolateral corner. Specimen of the left knee joint, lateral view: VFCL, vertical dimension of the fibular collateral ligament attachment site on the femoral epicondyle; HFCL, horizontal dimension of the fibular collateral ligament attachment site on the femoral epicondyle; VPT, vertical dimension of the popliteus tendon attachment site on the femoral epicondyle; HPT, horizontal dimension of the popliteus tendon attachment site on the femoral epicondyle; FCLL, length of the fibular collateral ligament; PTL, length of the popliteus tendon; DCA, distance between the centers of the popliteus tendon and fibular collateral ligament attachment sites

Download (165KB)
4. Fig. 3. Popliteofibular ligament specimen of the left knee joint in the popliteal region: PT, popliteus tendon; FCL, fibular collateral ligament; PFL, popliteofibular ligament

Download (130KB)
5. Fig. 4. Example of the measurements (mm) of the attachment zones in the posterolateral corner: VFCL, vertical dimension of the fibular collateral ligament attachment site on the femoral epicondyle; HFCL, horizontal dimension of the fibular collateral ligament attachment site on the femoral epicondyle; VPT, vertical dimension of the popliteus tendon attachment site on the femoral epicondyle; HPT, horizontal dimension of the popliteus tendon attachment site on the femoral epicondyle; DCA, distance between the centers of the popliteus tendon and fibular collateral ligament attachment sites

Download (127KB)
6. Fig. 5. Degree of external rotation following the transection of the posterolateral corner structures a, intact knee joint (baseline); b, following popliteus tendon transection; c, following fibular collateral ligament transection; d, combined effect after multiple structure transections

Download (326KB)

Copyright (c) 2024 Эко-Вектор

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».