Correction of proximal femoral deformities in children by a guided growth technique: A review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: After surgical treatment of proximal femoral deformities in children, secondary deformities can often develop. They can be corrected successfully by epiphysiodesis — a method of working with growth zones.

AIM: To analyze the literature about the development of epiphysiodesis, a proximal femoral technique, and the results of its use in pediatric patients with hip joint pathologies.

MATERIALS AND METHODS: The results of using epiphysiodesis for treating secondary deformities in children with hip joint pathologies were analyzed. The literature search was performed in open electronic scientific databases eLibrary and PubMed for the period from 1933 to 2022.

RESULTS: Most authors reported good and satisfactory results in the correction of secondary proximal femoral deformities in children. They also suggested that the development of these deformities could be prevented by epiphysiodesis in time frames, which should be chosen correctly. However, no consensus has been established on the timing of surgical intervention and methods of its implementation.

CONCLUSIONS: Proximal femoral deformities in children, such as valgus deformity of the femoral neck and its recurrence, consequences of Kalamchi type II avascular necrosis, and hypertrophy of the greater trochanter, were corrected for a long time by a complex surgical intervention–intertrochanteric osteotomy of the femur. Improvement in examination methods and a deeper understanding of the growth zone functioning of the proximal femur allow orthopedists to introduce into practice less invasive and less traumatic but effective methods for correcting these proximal femoral deformities by controlled blocking of the growth zones.

About the authors

Anatoly S. Kuznetsov

N.N. Priorov National Medical Research Center for Traumatology and Orthopedics

Author for correspondence.
Email: ortokuznetsov@gmail.com
ORCID iD: 0000-0003-2790-1063
SPIN-code: 5151-8573

MD, PhD student

Russian Federation, Moscow

Oleg V. Kozhevnikov

N.N. Priorov National Medical Research Center for Traumatology and Orthopedics

Email: 10otdcito@mail.ru
ORCID iD: 0000-0003-3929-6294
SPIN-code: 9538-4058

MD, PhD, Dr. Sci. (Med.)

Russian Federation, Moscow

Svetlana E. Kralina

N.N. Priorov National Medical Research Center for Traumatology and Orthopedics

Email: Kralina_s@mail.ru
ORCID iD: 0000-0001-6956-6801
SPIN-code: 9178-0184

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Forrester-Brown MF. The Lorenz bifurcation osteotomy for irreducible congenital dislocation of hip: (Section of Orthopaedics). Proc R Soc Med. 1938;31(5):454–461.
  2. Seeber E. Revalgisierung und Wachstumstendenz am proximalen Femur nach intertrochanteren Osteotomien [Recurrence of coxa valga and growth tendency of the proximal femur after intertrochanteric osteotomies]. Beitr Orthop Traumatol. 1976;23(7):391–398. (In Ger.)
  3. Phemister DB. Operative arrestment of longitudinal growth of bones in the treatment of deformities. J Bone Joint Surg. 1933;15(1):1–15.
  4. Métaizeau JP, Wong-Chung J, Bertrand H, et al. Percutaneous epiphysiodesis using transphyseal screws (PETS). J Pediatr Orthop. 1998;18(3):363–369.
  5. Blount WP, Clarke GR. Control of bone growth by epiphyseal stapling; a preliminary report. J Bone Joint Surg Am. 1949;31A(3):464–478.
  6. Stevens P. Guided growth: 1933 to the present. Strat Traum Limb Recon. 2006;1:29–35. doi: 10.1007/s11751-006-0003-3
  7. Siffert RS. Patterns of deformity of the developing hip. Clin Orthop Relat Res. 1981;(160):14–29.
  8. Weinstein SL, Mubarak SJ, Wenger DR. Developmental hip dysplasia and dislocation: Part II. Instr Course Lect. 2004;53:531–542.
  9. Pozdnikin IYu, Baskov VE, Barsukov DB, et al. Relative overgrowth of the greater trochanter and trochanteric-pelvic impingement syndrome in children: causes and x-ray anatomical characteristics. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(3):15–24. (In Russ.) doi: 10.17816/PTORS7315-24
  10. Kalamchi A, MacEwen GD. Avascular necrosis following treatment of congenital dislocation of the hip. J Bone Joint Surg Am. 1980;62(6):876–888.
  11. Campbell P, Tarlow SD. Lateral tethering of the proximal femoral physis complicating the treatment of congenital hip dysplasia. J Pediatr Orthop. 1990;10(1):6–8.
  12. Bowen JR, Johnson WJ. Percutaneous epiphysiodesis. Clin Orthop Relat Res. 1984;(190):170–173.
  13. Brax P, Gille P. L’épiphysiodèse percutanée. Premiers essais concernant les os longs des membres inférieurs [Percutaneous epiphysiodesis. First trials with the long bones of the lower limbs]. Chir Pediatr. 1989;30(6):263–265. (In Fr.).
  14. Canale ST, Russell TA, Holcomb RL. Percutaneous epiphysiodesis: experimental study and preliminary clinical results. J Pediatr Orthop. 1986;6(2):150–156.
  15. Chang CH, Chi CH, Lee ZL. Progressive coxa vara by eccentric growth tethering in immature pigs. J Pediatr Orthop B. 2006;15(4):302–306. doi: 10.1097/01202412-200607000-00014
  16. McCarthy JJ, Noonan KJ, Nemke B, et al. Guided growth of the proximal femur: a pilot study in the lamb model. J Pediatr Orthop. 2010;30(7):690–694. doi: 10.1097/BPO.0b013e3181edef71
  17. Oh CW, Joo SY, Kumar SJ, et al. A radiological classification of lateral growth arrest of the proximal femoral physis after treatment for developmental dysplasia of the hip. J Pediatr Orthop. 2009;29(4):331–335. doi: 10.1097/BPO.0b013e3181a5b09c
  18. Kim HW, Morcuende JA, Dolan LA, et al. Acetabular development in developmental dysplasia of the hip complicated by lateral growth disturbance of the capital femoral epiphysis. J Bone Joint Surg Am. 2000;82(12):1692–1700. doi: 10.2106/00004623-200012000-00002
  19. Beletskii AV, Sokolovskii OA, Likhachevskii YuV, et al. Osobennosti formirovaniya deformatsii proksimal’nogo otdela bedrennoi kosti (II tip po Kalamchi) i ee diagnostika). Ortopediya, travmatologiya i protezirovanie. 2011;(4):5–12. (In Russ.)
  20. Bowen JR, Johnson WJ. Percutaneous epiphysiodesis. Clin Orthop Relat Res. 1984;(190):170–173.
  21. Canale ST, Russell TA, Holcomb RL. Percutaneous epiphysiodesis: experimental study and preliminary clinical results. J Pediatr Orthop. 1986;6(2):150–156.
  22. Weinstein JN, Kuo KN, Millar EA. Congenital coxa vara. A retrospective review. J Pediatr Orthop. 1984;4(1):70–77. doi: 10.1097/01241398-198401000-00015
  23. Foroohar A, McCarthy JJ, Yucha D, et al. Head-shaft angle measurement in children with cerebral palsy. J Pediatr Orthop. 2009;29(3):248–250. doi: 10.1097/BPO.0b013e31819bceee
  24. Chang CH, Chi CH, Lee ZL. Progressive coxa vara by eccentric growth tethering in immature pigs. J Pediatr Orthop B. 2006;15(4):302–306. doi: 10.1097/01202412-200607000-00014
  25. McGillion S, Clarke NM. Lateral growth arrest of the proximal femoral physis: a new technique for serial radiological observation. J Child Orthop. 2011;5(3):201–207. doi: 10.1007/s11832-011-0339-1
  26. Torode IP, Young JL. Caput valgum associated with developmental dysplasia of the hip: management by transphyseal screw fixation. J Child Orthop. 2015;9(5):371–379. doi: 10.1007/s11832-015-0681-9
  27. Agus H, Önvural B, Kazimoglu C, et al. Medial percutaneous hemi-epiphysiodesis improves the valgus tilt of the femoral head in developmental dysplasia of the hip (DDH) type-II avascular necrosis. Acta Orthop. 2015;86(4):506–510. doi: 10.3109/17453674.2015.1037222
  28. Lee WC, Kao HK, Yang WE, et al. Guided growth of the proximal femur for hip displacement in children with cerebral palsy. J Pediatr Orthop. 2016;36(5):511–515. doi: 10.1097/BPO.0000000000000480
  29. Hsieh HC, Wang TM, Kuo KN, et al. Guided growth improves coxa valga and hip subluxation in children with cerebral palsy. Clin Orthop Relat Res. 2019;477(11):2568–2576. doi: 10.1097/CORR.0000000000000903
  30. Portinaro N, Turati M, Cometto M, et al. Guided growth of the proximal femur for the management of hip dysplasia in children with cerebral palsy. J Pediatr Orthop. 2019;39(8):e622–e628. doi: 10.1097/BPO.0000000000001069
  31. Zakrzewski AM, Carl JR, McCarthy JJ. Proximal femoral screw hemiepiphysiodesis in children with cerebral palsy improves the radiographic measures of hip subluxation. J Pediatr Orthop. 2022;42(6):e583–e589. doi: 10.1097/BPO.0000000000002152
  32. d’Heurle A, McCarthy J, Klimaski D, et al. Proximal femoral growth modification: effect of screw, plate, and drill on asymmetric growth of the hip. J Pediatr Orthop. 2018;38(2):100–104. doi: 10.1097/BPO.0000000000000771
  33. Davids JR, McBrayer D, Blackhurst DW. Juvenile hallux valgus deformity: surgical management by lateral hemiepiphyseodesis of the great toe metatarsal. J Pediatr Orthop. 2007;27(7):826–830. doi: 10.1097/BPO.0b013e3181558a7c
  34. Compere EL, Garrison M, Fahey JJ. Deformities of the femur resulting from arrestment of growth of the capital and greater trochanteric epiphyses. J Bone Joint Surg Am. 1940;22:909–915
  35. Laurent LE. Growth disturbances of the proximal end of the femur in the light of animal experiments. Acta Orthop Scand. 1959;28:255–261. doi: 10.3109/17453675908988630
  36. Langenskiöld A, Salenius P. Epiphyseodesis of the greater trochanter. Acta Orthop Scand. 1967;38(2):199–219. doi: 10.3109/17453676708989634
  37. Edgren W. Coxa plana. A clinical and radiological investigation with particular reference to the importance of the metaphyseal changes for the final shape of the proximal part of the femur. Acta Orthop Scand Suppl. 1965;Suppl 84:1–129.
  38. Langenskiöld A, Salenius P. Epiphyseodesis of the greater trochanter. Acta Orthop Scand. 1967;38(2):199–219. doi: 10.3109/17453676708989634
  39. Gage JR, Cary JM. The effects of trochanteric epiphyseodesis on growth of the proximal end of the femur following necrosis of the capital femoral epiphysis. J Bone Joint Surg Am. 1980;62(5):785–794.
  40. Stevens PM, Coleman SS. Coxa breva: its pathogenesis and a rationale for its management. J Pediatr Orthop. 1985;5(5):515–521.
  41. Westin GW, Ilfeld FW, Provost J. Total avascular necrosis of the capital femoral epiphysis in congenital dislocated hips. Clin Orthop Relat Res. 1976;(119):93–98.
  42. Lloyd-Roberts GC, Wetherill MH, Fraser M. Trochanteric advancement for premature arrest of the femoral capital growth plate. J Bone Joint Surg Br. 1985;67(1):21–24. doi: 10.1302/0301-620X.67B1.3968136
  43. Macnicol MF, Makris D. Distal transfer of the greater trochanter. J Bone Joint Surg Br. 1991;73(5):838–841. doi: 10.1302/0301-620X.73B5.1894678
  44. Buess P, Morscher E. Die schenkelhalsverlängernde Osteotomie mit Distalisierung des Trochanter major bei Coxa vara nach Hüftluxation [Osteotomy to lengthen the femur neck with distal adjustment of the trochanter major in coxa vara after hip dislocation]. Orthopade. 1988;17(6):485–490. (In Ger.).
  45. Mendes DG. Intertrochanteric osteotomy for degenerative hip disease. Indications. Clin Orthop Relat Res. 1975;(106):60–74. doi: 10.1097/00003086-197501000-00009
  46. Schneidmueller D, Carstens C, Thomsen M. Surgical treatment of overgrowth of the greater trochanter in children and adolescents. J Pediatr Orthop. 2006;26(4):486–490. doi: 10.1097/01.bpo.0000226281.01202.94
  47. Iwersen LJ, Kalen V, Eberle C. Relative trochanteric overgrowth after ischemic necrosis in congenital dislocation of the hip. J Pediatr Orthop. 1989;9(4):381–385.
  48. Matan AJ, Stevens PM, Smith JT, et al. Combination trochanteric arrest and intertrochanteric osteotomy for Perthes’ disease. J Pediatr Orthop. 1996;16(1):10–14. doi: 10.1097/00004694-199601000-00003
  49. McCarthy JJ, Weiner DS. Greater trochanteric epiphysiodesis. Int Orthop. 2008;32(4):531–534. doi: 10.1007/s00264-007-0346-5
  50. Shah H, Siddesh ND, Joseph B, et al. Effect of prophylactic trochanteric epiphyseodesis in older children with Perthes’ disease. J Pediatr Orthop. 2009;29(8):889–895. doi: 10.1097/BPO.0b013e3181c1e943
  51. Van Tongel A, Fabry G. Epiphysiodesis of the greater trochanter in Legg-Calvé-Perthes disease: the importance of timing. Acta Orthop Belg. 2006;72(3):309–313.
  52. Stevens PM, Anderson LA, Gililland JM, et al. Guided growth of the trochanteric apophysis combined with soft tissue release for Legg-Calve-Perthes disease. Strategies Trauma Limb Reconstr. 2014;9(1):37–43. doi: 10.1007/s11751-014-0186-y
  53. Herring JA, Kim HT, Browne R. Legg-Calve-Perthes disease. Part I: classification of radiographs with use of the modified lateral pillar and Stulberg classifications. J Bone Joint Surg Am. 2004;86(10):2103–2120.
  54. Kollitz KM, Gee AO. Classifications in brief: the Herring lateral pillar classification for Legg-Calvé-Perthes disease. Clin Orthop Relat Res. 2013;471(7):2068–2072. doi: 10.1007/s11999-013-2992-9
  55. Kwon KS, Wang SI, Lee JH, et al. Effect of greater trochanteric epiphysiodesis after femoral varus osteotomy for lateral pillar classification B and B/C border Legg-Calvé-Perthes disease: a retrospective observational study. Medicine (Baltimore). 2017;96(31). doi: 10.1097/MD.0000000000007723
  56. Pozdnikin IY, Baskov VE, Barsukov DB, et al. Trochanteric epiphysiodesis in complex treatment of children with hip pathology: analysis of preliminary results. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2020;8(3):249–258. (In Russ.) doi: 10.17816/PTORS33942
  57. Shin CH, Hong WK, Lee DJ, et al. Percutaneous medial hemi-epiphysiodesis using a transphyseal screw for caput valgum associated with developmental dysplasia of the hip. BMC Musculoskelet Disord. 2017;18(451). doi: 10.1186/s12891-017-1833-5
  58. Peng SH, Lee WC, Kao HK, et al. Guided growth for caput valgum in developmental dysplasia of the hip. J Pediatr Orthop B. 2018;27(6):485–490. doi: 10.1097/BPB.0000000000000529

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Medial epiphysiodesis [24]

Download (74KB)
3. Fig. 2. Determination of the tilt angle [24]

Download (74KB)
4. Fig. 3. Epiphysiodesis of the greater trochanter using a screw with a washer [54]

Download (80KB)
5. Fig. 4. Fixation of the greater trochanteric growth zone with an octagonal plate [51]

Download (42KB)

Copyright (c) 2023 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».