儿童先天性脊柱畸形矫正过程中金属结构失稳的原因分析

封面

如何引用文章

详细

论证:脊椎形成障碍是导致先天性脊柱侧凸发生和发展的最常见的脊柱畸形之一。大多数专家更推荐在儿童早期进行脊柱畸形的手术矫正。

目的是用于儿童先天性脊柱畸形的外科治疗评估经椎弓根金属结构的方案和原因,其与紊乱其完整
性无关。

材料与方法。在研究过程中进行了以2014年至2019年在H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery对286例6岁以下患一根紊乱椎体为背景先天性脊柱畸形儿童的病史分析。根据手术治疗结果将患者分为两组:研究组(n = 7)为金属结构失稳患者,
对照组(n = 12)为无金属结构失稳患者。在研究过程中确定了与异常相邻的椎弓根基底的大小,
评估了变形的脊柱侧凸和脊柱后凸分量的大小,以及根据Gertzbein分类对金属结构的支撑元素的正确位置。

结果。患者在年龄、脊柱侧凸和脊柱后凸的大小等方面无差异,但在椎弓根基底平均直径等指标上存在差异(p < 0.05)。所有患者术后均获得先天性脊柱畸形完全矫正。在术后的长期时间内,研究组患者经放射检查后发现,椎弓根的支撑元素相对于基底的位置不正,并脊柱畸形矫正平均损失25°。为此,反复进行了手术干预以恢复金属结构的稳定性,并矫正畸形。

结论。在矫正先天性脊柱畸形时,金属结构不稳定的原因既有脊柱畸形区的解剖与人体测量参数的
特点,以及手术干预的战术方面。金属结构失稳而又不破坏其完整性的主要原因是相邻椎体的椎弓基底相对于异常椎体较小。比较小的椎弓根基底和大量的先天性脊柱畸形矫正,其由于对脊柱畸形进行了彻底的矫正,使得有必要安装一个更扩展脊柱系统为了恢复区畸形的生理过程。

作者简介

Dmitry Kokushin

The Turner Scientific Research Institute for Children’s Orthopedics

Email: partgerm@yandex.ru
ORCID iD: 0000-0002-2510-7213

MD, PhD, Senior Research Associate of the Department of Pathology of the Spine and Neurosurgery

俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Sergei Vissarionov

The Turner Scientific Research Institute for Children’s Orthopedics

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048

MD, PhD, D.Sc., Professor, Deputy Director for Research and Academic Affairs, Head of the Department of Spinal Pathology and Neurosurgery

俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Michael Khardikov

The Turner Scientific Research Institute for Children’s Orthopedics

编辑信件的主要联系方式.
Email: denica1990@bk.ru
ORCID iD: 0000-0002-8269-0900
SPIN 代码: 3378-7685

MD, PhD student, Department of Spinal Pathology and Neurosurgery

俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Nikita Khusainov

The Turner Scientific Research Institute for Children’s Orthopedics

Email: nikita_husainov@mail.ru
ORCID iD: 0000-0003-3036-3796

MD, PhD, Research Associate of the Department of Pathology of the Spine and Neurosurgery

俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Aleksandra Filippova

The Turner Scientific Research Institute for Children’s Orthopedics

Email: alexandrjonok@mail.ru
ORCID iD: 0000-0001-9586-0668

MD, PhD Student of the Department of Spine Pathology and Neurosurgery

俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Vladislav Ilin

The Turner Scientific Research Institute for Children’s Orthopedics

Email: 89990323261@mail.ru
ORCID iD: 0000-0001-7444-7735

MD, clinical resident of the Department of Spine Pathology and Neurosurgery

俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

参考

  1. Feng Y, Hai Y, Zhao S, Zang L. Hemivertebra resection with posterior unilateral intervertebral fusion and transpedicular fixation for congenital scoliosis: results with at least 3 years of follow-up. Eur Spine J. 2016;25(10):3274-3281. https://doi.org/10.1007/s00586-016-4556-7.
  2. McMaster MJ, David CV. Hemivertebra as a cause of scoliosis. A study of 104 patients. J Bone Joint Surg Br. 1986;68(4):588-595.
  3. Виссарионов С.В., Картавенко К.А., Кокушин Д.Н., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией грудного отдела позвоночника на фоне нарушения формирования позвонков // Хирургия позвоночника. – 2013. – № 2. – С. 032–037. [Vissarionov SV, Kartavenko KA, Kokushin DN, Efremov AM. Surgical treatment of children with congenital thoracic spine deformity associated with vertebral malformation. Spine surgery. 2013;(2):032-037. (In Russ.)]. https://doi.org/10.14531/ss2013.2.32-37.
  4. Mladenov K, Kunkel P, Stuecker R. Hemivertebra resection in children, results after single posterior approach and after combined anterior and posterior approach: a comparative study. Eur Spine J. 2012;21(3):506-513. https://doi.org/10.1007/s00586-011-2010-4.
  5. Ruf M, Jensen R, Jeszenszky D, et al. Hemivertebra resection in congenital scoliosis — early correction in young children. Z Orthop Ihre Grenzgeb. 2006;144(1):74-79. https://doi.org/10.1055/s-2006-921417.
  6. Noordeen MH, Garrido E, Tucker SK, Elsebaie HB. The surgical treatment of congenital kyphosis. Spine (Phila Pa 1976). 2009;34(17):1808-1814. https://doi.org/10.1097/BRS.0b013e3181ab6307.
  7. Рябых С.О., Филатов Е.Ю., Савин Д.М. Результаты экстирпации полупозвонков комбинированным, дорсальным и педикулярным доступами: систематический обзор // Хирургия позвоночника. – 2017. – Т. 14. – № 1. – С. 14–23. [Ryabykh SO, Filatov EY, Savin DM. Results of hemivertebra excision through combined, posterior and transpedicular approaches: systematic review. Spine surgery. 2017;14(1):14-23. (In Russ.)]. https://doi.org/10.14531/ss2017.1.14-23.
  8. Мушкин А.Ю., Наумов Д.Г., Уменушкина Е.Ю. Экстирпация грудных и поясничных полупозвонков у детей: как техника операции влияет на ее травматичность? (Предварительные результаты и обзор литературы) // Травматология и ортопедия России. – 2018. – Т. 24. – № 3. – С. 83–90. [Mushkin AY, Naumov DG, Umenushkina EY. Thoracic and lumbar hemivertebra excision in pediatric patients: how does the operation technique influence on outcomes? (Cohort analysis and literature review). Traumatology and Orthopedics of Russia. 2018;24(3):83-90. (In Russ.)]. https://doi.org/10.21823/2311-2905-2018-24-3-83-90]
  9. Davne SH, Myers DL. Complications of lumbar spinal fusion with transpedicular instrumentation. Spine (Phila Pa 1976). 1992;17(6 Suppl):S184-189. https://doi.org/10.1097/00007632-199206001-00021.
  10. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res. 1986(203):7-17.
  11. Ruf M, Harms J. Posterior hemivertebra resection with transpedicular instrumentation: early correction in children aged 1 to 6 years. Spine (Phila Pa 1976). 2003;28(18):2132-2138. https://doi.org/10.1097/01.BRS.0000084627.57308.4A.
  12. Кокушин Д.Н., Белянчиков С.М., Мурашко В.В., и др. Сравнительный анализ корректности установки транспедикулярных винтов при хирургическом лечении детей с идиопатическим сколиозом // Хирургия позвоночника. – 2017. – Т. 14. – № 4. – С. 8–17. [Kokushin DN, Belyanchikov SM, Murashko VV, et al. Comparative analysis of the accuracy of pedicle screws insertion in surgical treatment of children with idiopathic scoliosis. Spine surgery. 2017;14(4):8-17. (In Russ.)]. https://doi.org/10.14531/ss2017.4.8-17.
  13. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990;15(1):11-14. https://doi.org/10.1097/00007632-199001000-00004.
  14. Виссарионов С.В., Картавенко К.А., Кокушин Д.Н., и др. Хирургическое лечение детей с врожденной деформацией поясничной локализации: экстирпация или частичная резекция полупозвонка? // Травматология и ортопедия России. – 2017. – Т. 23. – № 4. – С. 18–28. [Vissarionov SV, Kartavenko KA, Kokushin DN, et al. Surgical treatment of children with congenital lumbar scoliosis: complete or partial resection of malformed vertebrae? Traumatology and Orthopedics of Russia. 2017;23(4):18-28. (In Russ.)]. https://doi.org/10.21823/2311-2905-2017-23-4- 18-28.
  15. Chang DG, Kim JH, Ha KY, et al. Posterior hemivertebra resection and short segment fusion with pedicle screw fixation for congenital scoliosis in children younger than 10 years: greater than 7-year follow-up. Spine (Phila Pa 1976). 2015;40(8):E484-491. https://doi.org/10.1097/BRS.0000000000000809.
  16. Li J, Lu GH, Wang B, et al. Pedicle screw implantation in the thoracic and lumbar spine of 1-4-year-old children: evaluating the safety and accuracy by a computer tomography follow-up. J Spinal Disord Tech. 2013;26(2):E46-52. https://doi.org/10.1097/BSD.0b013e31825d5c87.
  17. Hedequist D, Emans J, Proctor M. Three rod technique facilitates hemivertebra wedge excision in young children through a posterior only approach. Spine (Phila Pa 1976). 2009;34(6):E225-229. https://doi.org/10.1097/BRS.0b013e3181997029.
  18. Boachie-Adjei O, Yagi M, Sacramento-Dominguez C, et al. Surgical risk stratification based on preoperative risk factors in severe pediatric spinal deformity surgery. Spine Deform. 2014;2(5):340-349. https://doi.org/10.1016/j.jspd.2014.05.004.
  19. Ruf M, Harms J. Hemivertebra resection by a posterior approach: innovative operative technique and first results. Spine (Phila Pa 1976). 2002;27(10):1116-1123. https://doi.org/10.1097/00007632-200205150-00020.
  20. Zhang J, Shengru W, Qiu G, et al. The efficacy and complications of posterior hemivertebra resection. Eur Spine J. 2011;20(10):1692-1702. https://doi.org/10.1007/s00586-011-1710-0.
  21. Guo J, Zhang J, Wang S, et al. Risk factors for construct/implant related complications following primary posterior hemivertebra resection: Study on 116 cases with more than 2 years‘ follow-up in one medical center. BMC Musculoskelet Disord. 2016;17(1):380. https://doi.org/10.1186/s12891-016-1229-y.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kokushin D., Vissarionov S., Khardikov M., Khusainov N., Filippova A., Ilin V., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».