Molecular genetic analysis of genes for detoxification and DNA repair in children with congenital deformities of the thoracic and lumbar spine
- 作者: Sogoyan M.V.1, Khalchitsky S.E.1, Vissarionov S.V.1, Kokushin D.N.1, Filippova A.N.1
-
隶属关系:
- The Turner Scientific Research Institute for Children’s Orthopedics
- 期: 卷 6, 编号 3 (2018)
- 页面: 40-46
- 栏目: Original papers
- URL: https://journals.rcsi.science/turner/article/view/10226
- DOI: https://doi.org/10.17816/PTORS6340-46
- ID: 10226
如何引用文章
详细
Introduction. Spine congenital curvatures, which form from anomalies in the development of vertebral bodies, comprise 3.2% of the general structure of vertebral column deformities. Several such anomalies present during adolescence lead to severe and rigid curvature of the spinal column and are often accompanied by irreversible neurological disorders. The timely detection of the progressive forms of curvature and early surgical treatment are measures that prevent against neurological deficit development and gross congenital deformities of the spine in children. However, it is extremely difficult to predict the course of congenital spinal column deformation in infants based on clinical and radiological investigations alone. Therefore, the study of congenital malformation genetic markers is an essential and immediate task.
Materials and methods. Two hundred 1.2–16-year-old children with congenital deformities of the thoracic and lumbar spine were examined using clinical and radiation diagnostic methods. Molecular genetic studies were performed by analyzing several polymorphic regions in the genes for the first and second stages of detoxification and DNA repair, which are of clinical importance as predisposing factors in several congenital malformations. Polymorphisms were determined using the polymerase chain reaction (PCR) method. The results were determined using gel electrophoresis of DNA in a polyacrylamide gel.
Results and discussion. The polymorphisms of the genes CYP1A2, NAT2, GSTM1, GSTT1, GSTP1, XRCC1, XRCC3 and their frequency distributions among patients with congenital spine deformities (CSD) were studied. The results for each gene are presented in the digital diagrams, and their indicators are compared with the values of the control group.
Conclusion. In most patients (83%) with spinal congenital deformations, there were mutations of candidate genes in the homozygous state; however, the simultaneous carriage of several mutant alleles in patients with CSD was more than twice that in the control group. Children with multiple and combined defects in spine development noted the presence of more mutations in the genes for detoxification and DNA repair. The obtained results already assume to a certain extent the course of the spine congenital deformity in patients at an early age. However, the final evaluation and identification of molecular genetic criteria for the progressive course of spine congenital deformities in children requires further study.
作者简介
Marina Sogoyan
The Turner Scientific Research Institute for Children’s Orthopedics
编辑信件的主要联系方式.
Email: sogoyanmarina@mail.ru
MD, Research Associate of the Genetic Laboratory of the Center for Rare and Hereditary Diseases in Children
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603Sergey Khalchitsky
The Turner Scientific Research Institute for Children’s Orthopedics
Email: s_khalchitski@mail.ru
ORCID iD: 0000-0003-1467-8739
MD, PhD, Research Associate of the Genetic Laboratory of the Center for Rare and Hereditary Diseases in Children
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603Sergei Vissarionov
The Turner Scientific Research Institute for Children’s Orthopedics
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
MD, PhD, Professor, Deputy Director for Research and Academic Affairs, Head of the Department of Spinal Pathology and Neurosurgery
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603Dmitry Kokushin
The Turner Scientific Research Institute for Children’s Orthopedics
Email: partgerm@yandex.ru
MD, PhD, Senior Research Associate of the Department of Pathology of the Spine and Neurosurgery
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603Alexandra Filippova
The Turner Scientific Research Institute for Children’s Orthopedics
Email: alexandrjonok@mail.ru
MD, PhD Student, Orthopedic and Trauma Surgeon of the Department of Spine Pathology and Neurosurgery
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603参考
- Виссарионов С.В., Картавенко К.А., Кокушин Д.Н., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией грудного отдела позвоночника на фоне нарушения формирования позвонков // Хирургия позвоночника. – 2013. – № 2. – С. 32–37. [Vissarionov SV, Kartavenko KA, Kokushin DN, Efremov AM. Surgical treatment of children with congenital deformity of the thoracic spine with vertebral formation. Spine Surgery. 2013;(2):32-37. (In Russ.)]
- Виссарионов С.В., Кокушин Д.Н., Картавенко К.А., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией поясничного и пояснично-крестцового отделов позвоночника // Хирургия позвоночника. – 2012. – № 3. – С. 33–37. [Vissarionov SV, Kokushin DN, Kartavenko KA, Efremov AM. Surgical treatment of children with congenital deformity of the lumbar and lumbosacral spine. Spine Surgery. 2012;(3):33-37. (In Russ.)]
- Виссарионов С.В., Кокушин Д.Н., Белянчиков С.М., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией верхнегрудного отдела позвоночника // Хирургия позвоночника. – 2011. – № 2. – С. 35–40. [Vissarionov SV, Kokushin DN, Belianchikov SM, Efremov AM. Surgical treatment of children with congenital deformity of the upper thoracic spine. Spine Surgery. 2011;(2):35-40. (In Russ.)]
- Webster WS, Abela D. The effect of hypoxia in development. Birth Defects Res C Embryo Today. 2007;81(3):215-228. doi: 10.1002/bdrc.20102.
- Martínez-Frías ML, Bermejo E, Rodríguez-Pinilla E, Frías JL. Risk for congenital anomalies associated with different sporadic and daily doses of alcohol consumption during pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol. 2004;70(4):194-200. doi: 10.1002/bdra.20017.
- Vertebral Anomalies: Hemivertebra. In: Holmes LB. Common Malformations. New York: Oxford University Press; 2012. P. 283-289.
- Breen JG, Claggett TW, Kimmel GL, et al. Heat shock during rat embryo development in vitro results in decreased mitosis and abundant cell death. Reprod Toxicol. 1999;13(1):31-39. doi: 10.1016/S0890-6238(98)00056-2.
- Alexander PG, Tuan RS. Role of environmental factors in axial skeletal dysmorphogenesis. Birth Defects Res C Embryo Today. 2010;90(2):118-132. doi: 10.1002/bdrc.20179.
- Aberg A, Westbom L, Kаllеn B. Congenital malformation among infants who mothers had gestational diabetes or preexisting diabetes. Early Hum Dev. 2001;61(2):85-95. doi: 10.1016/S0378-3782(00)00125-0.
- Yashwanth R, Chandra N, Gopinath PM. Chromosomal Abnormalities among Children with Congenital Malformations. Int J Hum Genet. 2010;10(1-3):57-63. doi: 10.1080/09723757.2010.11886085.
- Prescott KR, Wilkie A. Genetic aspects of birth defects: new understandings of old problems Arch Dis Child Fetal Neonatal Ed. 2007;92(4):F308-F314. doi: 10.1136/adc.2004.062968.
- Black HA, Parry D, Atanur SS, et al. De novo mutations in autosomal recessive congenital malformations. Genet Med. 2016;18(12):1325-1326. doi: 10.1038/gim.2016.62.
- Lo CL, Zhou FC. Environmental alterations of epigenetics prior to the birth. Int Rev Neurobiol. 2014;115:1-49. doi: 10.1016/B978-0-12-801311-3.00001-9.
- Sparrow DB, Chapman G, Smith AJ, et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell. 2012;149(2):295-306. doi: 10.1016/j.cell.2012.02.054.
- Giampietro PF, Raggio CL, Blank RD, et al. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol. 2013;4(1-2):94-105. doi: 10.1159/000345329.
- Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. Scientifica (Cairo). 2012;2012:1-15. doi: 10.6064/2012/152365.
- Takeda K, Kou I, Kawakami N, et al. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis. Hum Mutat. 2017;38(3):317-323. doi: 10.1002/humu.23168.
- Lefebvre M, Duffourd Y, Jouan T, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin Genet. 2017;91(6):908-912. doi: 10.1111/cge.12918.
- Chen W, Liu J, Yuan D, et al. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget. 2016;7(35):57430-57441. doi: 10.18632/oncotarget.10619.
- Шабалдин А.В., Глушкова О.А., Макарченко О.С., и др. Полиморфизм генов биотрансформации ксенобиотиков у женщин, родивших детей с врожденными пороками развития // Педиатрия. Журнал им. Г.Н. Сперанского. – 2007. – Т. 86. – № 1. – С. 7–14. [Shabaldin AV, Glushkova OA, Makarchenko OS, et al. Polimorfizm genov biotransformatsii ksenobiotikov u zhenshchin, rodivshikh detey s vrozhdennymi porokami razvitiya. Pediatriia. 2007;86(1):7-14. (In Russ.)]
- Olshan AF, Shaw GM, Millikan RC, et al. Polymorphisms in DNA repair genes as risk factors for spina bifida and orofacial clefts. Am J Med Genet A. 2005;135(3):268-273. doi: 10.1002/ajmg.a.30713.
- Sachse C, Brockmöller J, Bauer S, Roots I. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999;47(4):445-449. doi: 10.1046/j.1365-2125.1999.00898.x.
补充文件
