Efficiency of LNG cold energy recovery in standalone refrigerated containers
- Authors: Monastyrsky D.Y.1, Kiselev I.G.1
-
Affiliations:
- Emperor Alexander I St. Petersburg State Transport University
- Issue: Vol 11, No 2 (2025)
- Pages: 246-260
- Section: Original studies
- URL: https://journals.rcsi.science/transj/article/view/311284
- DOI: https://doi.org/10.17816/transsyst681999
- ID: 311284
Cite item
Full Text
Abstract
AIM. The paper discusses the process environment of liquefied natural gas (LNG) cold energy recovery from the fuel system of a standalone refrigerated container (reefer container). To evaluate the efficiency of LNG cold energy utilization.
MATERIALS AND METHODS. The authors determined the refrigeration potential of the LNG regasification process and a developed a thermal design of the refrigeration plant.
RESULTS. The paper describes a cascade refrigeration plant with LNG and carbon dioxide circuits. The authors assess the expected effect of cold energy utilization during LNG regasification in the refrigeration system of a refrigerator.
CONCLUSION. The results allow to assess the efficiency of LNG refrigeration potential utilization in refrigerator vehicles.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry Y. Monastyrsky
Emperor Alexander I St. Petersburg State Transport University
Email: swen_88@mail.ru
ORCID iD: 0009-0009-3528-8490
SPIN-code: 1010-3575
post-graduate student
Russian Federation, St. PetersburgIgor G. Kiselev
Emperor Alexander I St. Petersburg State Transport University
Author for correspondence.
Email: tatkiselev4.igor@yandex.ru
ORCID iD: 0000-0002-0862-9669
SPIN-code: 7398-3334
Dr. Sci. (Engineering), professor
Russian Federation, St. PetersburgReferences
- Pokrovskaya OD. Development of Russia’s Logistics Transport System Under Sanctions. Bulletin of scientific research results. 2023;(3):58-72. (In Russ.) EDN: QTHKZC doi: 10.20295/2223-9987-2023-3-58-72
- Zoidov KKh, Medkov AA, Zoidov ZK. Problems and prospects of meridional transformation the transport and transit system of Russia using traditional international transport routes the North–South corridor. Regionalnye problemy preobrazovaniya ekonomiki. 2023;12:125-142. doi: 10.26726/1812-7096-2023-12-125-142
- Van Kh, Korovyakovskii EK. Sostoyanie i analiz razvitiya zheleznodorozhnykh refrizheratornykh konteinerov. Nauchnyi aspekt. 2023;27(11):3373-3380. (In Russ.) EDN: PIKXDO
- Momot V. LNG transportation over long and medium distances: problems and solutions. Fish sphere. 2016;(1):26-27. EDN: YZLOBT (In Russ.)
- Li DC, Yang HL, Xing YW. Economic and emission assessment of LNG-fuelled ships for inland waterway transportation. Ocean & Coastal Management. 2023;(246). doi: 10.1016/j.ocecoaman.2023.106906
- Hoffelner M, Kopeinig J, Schieler P. The future of freight: Evaluating the environmental and economic benefits of diesel, LNG, and electric trucks in multimodal transport. Research in Transportation Business & Management. 2025;(59). doi: 10.1016/j.rtbm.2025.101319
- LNG-fuelled trucking accelerates in Asia, denting diesel demand. Accessed: 06.05.2025. Available from: https://www.reuters.com/business/energy/lng-fuelled-trucking-accelerates-asia-denting-diesel-demand-2024-10-23
- Tan H, Li Y, Tuo H. Theoretical and Experimental Study on a Self-Refrigerating System for LNG-Fueled Refrigerated Vehicles. J. Nat. Gas Sci. Eng. 2014;(20):192-199. doi: 10.1016/j.jngse.2014.06.022
- Jeong, SJ, Park SS, Min HK, Jo GY. A Study of Development of Refrigerated Truck Small Scale Cooling System and Key-Part using Natural Refrigerants. Journal of the Korean Institute of Gas. 2019;(23):19-26. doi: 10.7842/kigas.2019.23.1.19
- Wang F, Li M, Zhang Y, et al. Study on Roof-Mounted Radiant Cooling System for LNG-Fueled Refrigerated Vehicles. Int. J. Low-Carbon Technol. 2021;(16):268-274. doi: 10.1093/ijlct/ctaa062
- Saeed MZ, Hafner A, Gabrielii C, et al. CO2 refrigeration system design and optimization for LNG driven cruise ships. In: Proceedings of the 9th Conference on Ammonia and CO2 Refrigeration Technologies Ohrid, R. 2021 Sept 16-17. Macedonia: IIR; 2021. doi: 10.18462/iir.nh3-co2.2021.0015
- Korlak P, Złoczowska E, Behrendt C. Utilization of waste heat and cold on the example of an LNG-fueled ultra-large container ship. Energy Reports. 2024;(12):3488-3503. doi: 10.1016/j.egyr.2024.09.026
- Kiselev IG, Komissarov SB, Monastyrsky DYa. Alternative energy sources for transporting thermosensitive goods in autonomous refrigerated containers. Proceedings of Petersburg Transport University. 2024;(21):229-237. doi: 10.20295/1815-588X-2024-01-229-237
- Danilova GN, Bogdanov SN, Ivanov OP, et al. Teploobmennye apparaty kholodilnykh ustanovok. Leningrad: Mashinostroenie; 1986. (In Russ.)
- Dossat RJ. Principles of Refrigeration. New York and London: John Wiley & Sons Inc.; 1961.
- Voron OA. The use of liquefied natural gas in the combined power unit of autonomous refrigerated car. Vestik of the Railway Research Institute. 2019;(1):29-32. doi: 10.21780/2223-9731-2019-78-3-188-192
- Blagin EV, Panshin RA, Uglanov DA. Comparative analysis оf different plants utilizing cold energy of liquid natural gas. In: Proceedings of the International Scientific and Practical Conference: “Problemy i perspektivy razvitiya dvigatelestroeniya”; 2018 Sept 12–14, Samara, RU. Samara National Research University; 2018:121-122. EDN: YQTHWH
- Zavaritskii NV, Zel’dovich AG. Teploprovodnost’ tekhnicheskikh materialov pri nizkikh temperaturakh. Journal of Technical Physics. 1956;(26):2032-2036. (In Russ.)
- Efimov VV, Kobozeva NG., Kongorai OA, Slobodchikov NA. Zheleznodorozhnyi khladotransport i dostavka skoroportyashchikhsya gruzov. Yekaterinburg: UMTS ZhDT; 2022. (In Russ.)
Supplementary files
