Unmanned aerial vehicle for monitoring the AC contact network

Cover Page

Cite item

Full Text

Abstract

Aim. To demonstrate the feasibility of using a contactless battery recharging method for an unmanned aerial vehicle during the monitoring of the AC contact network in railway transport.

Materials and methods. A mathematical model was created using the COMSOL Multiphysics 6.0 program. Maxwell's equations and the finite element method were applied to calculate the induced electromotive force across the on-board winding of an aircraft.

Results. We determined the optimal operating modes of the developed aircraft. The economic feasibility of its use for monitoring the contact network of railway transport is shown.

Practical significance. We developed an unmanned aerial vehicle with extended nonstop flight duration and an increased capacity for continuous monitoring.

About the authors

Konstantin K. Kim

Emperor Alexander I St. Petersburg State Transport University

Author for correspondence.
Email: kimkk@inbox.ru
ORCID iD: 0000-0001-7282-4429
SPIN-code: 3278-4938

Doctor of Technical Sciences, Professor

Russian Federation, St. Petersburg

Elena B. Koroleva

Emperor Alexander I St. Petersburg State Transport University

Email: elzazybina@yandex.ru
ORCID iD: 0009-0002-1804-6982
SPIN-code: 5664-6112

Candidate of Technical Sciences, Associate Professor

Russian Federation, St. Petersburg

Peter K. Rybin

Emperor Alexander I St. Petersburg State Transport University

Email: rybin@pgups.ru
ORCID iD: 0000-0001-7396-2954
SPIN-code: 6592-1064

Candidate of Technical Sciences, Professor

Russian Federation, St. Petersburg

Olga A. Stepanskaya

Emperor Alexander I St. Petersburg State Transport University

Email: step_step@mail.ru
ORCID iD: 0000-0002-2993-2261
SPIN-code: 5918-7823

Candidate of Technical Sciences

Russian Federation, St. Petersburg

References

  1. Drony na zheleznyh dorogah. Ozhidanie ili realnost? [internet] Accessed: 29.11.2023. Available from: https://www.djimsk.ru/guides/2022/02/16/drony-na-zheleznyh-dorogah-ozhidanie-vs-realnost (In Russ.)
  2. Primenenie bespilotnyh letatelnyh apparatov v zheleznodorozhnom complexse [internet] Accessed: 29.11.2023. Available from: https://eoi.rzd.ru/Ex/Claim/View/227 (In Russ.)
  3. Klassifikaciay BLA po letnym harakteristikam. [internet] Accessed: 29.11.2022. Available from: https://docs.geoscan.aero/ru/master/database/const-module/classification/ classification.html (In Russ.)
  4. Zelentsov VV, Tarasov VS, Shapovalov LA. Assessment of changes in the flight duration of an unmanned aerial vehicle with an electric motor. Bulletin of the Bauman Moscow State Technical University. 2013;3(92):77–85. (In Russ.) EDN: RBGXGB
  5. Eurasian Patent RUS 2006007 / 31.03.2023 Kim KK. Unmanned aerial system. (In Russ.)
  6. Valinsky OS, Kim KK. Developments of the St. Petersburg State University of Communications of Emperor Alexander I in the field of unconventional and renewable energy. Transport of the Russian Federation. 2024;2:8–14. (In Russ.)
  7. Phantom 4 Pro Plus V2.0. Authorized retail store. Product сatalog. [internet] Accessed: 29.07.2024. Available from: https://aeromotus.ru/product/dji-phantom-4-pro-plus-v2-0 (In Russ.)
  8. Vataev AS, Mikhailov MV, Solovyov AS. Mathematical modeling of contactless battery charging of an unmanned aerial vehicle. In: Transport of Russia: problems and prospects: Materials of the International Scientific and Practical Conference, St. Petersburg, November 09-10, 2022 / N.S. Solomenko Institute of Transport Problems of the Russian Academy of Sciences, Team of authors. Volume 2. St. Petersburg: N.S. Solomenko Institute of Transport Problems of the Russian Academy of Sciences; 2022. 103–106. (In Russ.) EDN: MEEULT
  9. Nekrasov OA, Lisitsyn AL, Muginstein LA, Rachmaninov VI. Modes of operation of mainline electric locomotives. Moscow: Transport; 1983. (In Russ.)
  10. Mikhailov MV, Solovyov AS, Rogov AS, et al. Contactless method of charging the battery of an unmanned aerial vehicle. In: Modern science, society, education: current issues, achievements and innovations: Collection of articles of the II International Scientific and Practical Conference, Penza, September 15, 2022. Penza: Science and Education; 2022:30–33. (In Russ.) EDN: XXMEUI.
  11. Kim KK. Sistemy elektrodvizheniya s ispol’zovaniem magnitnogopodvesa i sverhprovodimosti. Moscow: GOU “Uchebno-metodicheskij centr po obrazovaniy nazheleznodorozhnom transporte”; 2007. Accessed: 29.07.2024. Available from: https://e.lanbook.com/book/59070 (In Russ.)
  12. Zaitsev AA, Antonov YuF. Magnitolevitacionnyj transport: nauchnye problem tekhnicheskie resheniya. Moscow: FIZMATLIT; 2015. (In Russ.)
  13. Bins KJ, Lawrenson P. Analysis and computation of electric and magnetic problems. Oxford: PergamonPress; 1963. [internet] Accessed: 04.08.2024. Available from: https:// archive.org/details/analysiscomputat0000binn
  14. Flankl M, Wellerdieck T, Tüysüz A, Kolar JW. Scaling laws for electrodynamic suspension in high-speed transportation. IET Electric Power Applications. 2017;12(3):357–364. doi: 10.1049/iet-epa.2017.0480
  15. Chin JC, Gray JS, Jones SM, Berton JJ. Open-Source Conceptual Sizing Models for the Hyperloop Passenger Pod. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 5–9 January 2015. Kissimmee, Florida. doi: 10.2514/6.2015-1587
  16. Kim KK, Koroleva EB, Vataev AS. Monitoring of railway infrastructure facilities using unmanned aerial vehicles. In: Eltrans – 2023: proceedings of the XI International Symposium, St. Petersburg, May 31 – June 02, 2023 / St. Petersburg State University of Railways of Emperor Alexander I. St. Petersburg: NP-Print; 2023:247–252. EDN: ARWRUW

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The UAV: a) side view; b) top view

Download (168KB)
3. Fig. 2. Geometry of the mathematical model

Download (334KB)
4. Fig. 3. The mathematical model for calculating the EMF when an UAV flies along the contact wire

Download (443KB)
5. Fig. 4. The flight path of the UAV: a) under the wire, b) to the side of the wire: 1 is the axis of the direction of rectilinear motion; 2 is the contact wire; 3 is the winding of the annular coil; 4 is the flight path

Download (237KB)
6. Fig. 5. The dependence of the EMF across the winding when moving along the contact wire with an alternating current of 50 Hz and the effective value of 300 A: curve 1 – variant 2; curve 2 – variant 1

Download (267KB)

Copyright (c) 2024 Kim K.K., Koroleva E.B., Rybin P.K., Stepanskaya O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».