Systems of autonomous running of urban electric transport
- Authors: Byltseva V.D.1, Izvarin M.Y.1, Kim K.K.1
-
Affiliations:
- Emperor Alexander I Saint Petersburg State Transport University
- Issue: Vol 10, No 3 (2024)
- Pages: 300-319
- Section: Reviews
- URL: https://journals.rcsi.science/transj/article/view/265899
- DOI: https://doi.org/10.17816/transsyst634812
- ID: 265899
Cite item
Full Text
Abstract
The autonomous running system (ARS) is crucial for urban electric transport, ensuring the movement of electric rolling stock even when access to the contact network is lost owing to emergencies or repair work. Thanks to the ARS, the vehicles can maintain their set speeds, providing passengers with comfortable and safe movements.
The autonomous running allows vehicles to remain mobile and accessible to passengers, even without power supply from the contact network. ARS increases the reliability and efficiency of urban electric transport, ensuring a more stable operation of the transportation system in the city.
This article aims to review the transport systems of urban electric transport and assess their development potential by integrating an ARS into the rolling stock.
Full Text
##article.viewOnOriginalSite##About the authors
Vasilisa D. Byltseva
Emperor Alexander I Saint Petersburg State Transport University
Author for correspondence.
Email: Vasilisa7887@bk.ru
ORCID iD: 0009-0004-4137-6933
SPIN-code: 1381-6240
PhD Student
Russian Federation, Saint PetersburgMikhail Yu. Izvarin
Emperor Alexander I Saint Petersburg State Transport University
Email: misha3568723@yandex.ru
ORCID iD: 0009-0002-5638-3867
SPIN-code: 7753-5243
Candidate of Technical Sciences, Associate Professor
Russian Federation, Saint PetersburgKonstantin K. Kim
Emperor Alexander I Saint Petersburg State Transport University
Email: kimkk@inbox.ru
ORCID iD: 0000-0001-7282-4429
SPIN-code: 3278-4938
Doctor of Technical Sciences, Professor
Russian Federation, Saint PetersburgReferences
- Evstafev AM. Povyshenie energeticheskoj effektivnosti elektricheskogo podvizhnogo sostava: [dissertation]. St. Petersburg; 2018. (In Russ.) EDN: ZCZMUV
- Sharyakov VA, Sharyakova OL, Sharyakov KV, Lebedeva VA. Building a system of increased autonomous running with a limitation of current consumption from the contact network. Bulletin of the results of scientific research. 2023;(4):146–157. (In Russ.) EDN: DUIIXI doi: 10.20295/2223-9987-2023-4-146-157
- Parfenov SI. Trollejbus s avtonomnym hodom. Transport of the Russian Federation. 2012;3-4:40–41. (In Russ.) EDN: PBZHYR
- Metrocentro: Seville tram [internet] Accessed: 13.07.2024. Available from: https://mikhail.krivyy.com/2016/04/10/sevilla-metrocentro/
- Ivanov SN, Kim KK, Prikhodchenko OV, Prosolovich AA. Theoretical foundations of mathematical modeling of power conversion processes in combined energy devices. Scientific notes of KnAGTU. 2020;I-1(41):37-44 (In Russ.) EDN: AKBSNQ
- Kim KK. Sistemy elektrodvizheniya s ispol’zovaniem magnitnogo podvesa i sverhprovodimosti. Moscow: GOU “Uchebno-metodicheskij centr po obrazovaniyu na zheleznodorozhnom transporte”; 2007. (In Russ.)
- Zaitsev AA, Antonov YuF. Magnitolevitacionnyj transport: nauchnye problem tekhnicheskie resheniya. Moscow: FIZMATLIT; 2015. (In Russ.)
- Bins KJ, Lawrenson P. Analysis and computation of electric and magnetic problems. Oxford: Pergamon Press; 1963.
- Flankl M, Wellerdieck T, Tüysüz A, Kolar JW. Scaling laws for electrodynamic suspension in high-speed transportation. IET Electric Power Applications. 2017;12(3):357–364. doi: 10.1049/iet-epa.2017.0480
- Chin JC, Gray JS, Jones SM, BertonJJ. Open-Source Conceptual Sizing Models for the Hyperloop Passenger Pod. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 5–9 January 2015. Kissimmee, Florida. Kissimmee; 2015. doi: 10.2514/6.2015-1587
- Janzen R. Trans Pod Ultra-High-Speed Tube Transportation: Dynamics of Vehicles and Infrastructure. Procedia Engineering. 2017;199:8–17. doi: 10.1016/j.proeng.2017.09.142
- Beach AE. The Pneumatic Tunnel Under Broadway. NY. Scientific American. 1870;22(10):154–156. doi: 10.1038/scientificamerican03051870-154
- Oettershagen P. Perpetual flight with a small solar-powered UAV: Flight results, performance analysis and model validation. In: 2016 IEEE Aerospace Conference, Big Sky, MT. IEEE; 2016. doi: 10.1109/AERO.2016.7500855
- Evstaf’ev AM, Nikitin VV, Telichenko SA. Energy Converters for Hybrid Traction Power Systems Used in Electric Transport. Russ. Electr. Engin. 2020;91:77–81. doi: 10.3103/S1068371220020042
- Nikitin VV, Sychugov AN, Rolle IA, et al. Calculations of the Parameters and Simulation of the Operation of Nonlinear Surge Arresters for AC Rolling Stock. Russ. Electr. Engin. 2020;91:87–92. doi: 10.3103/S1068371220020078
- Valinsky OS, Evstafev AM, Nikitin VV. The Effectiveness of Energy Exchange Processes in Traction Electric Drives with Onboard Capacitive Energy Storages. Russ. Electr. Engin. 2018;89:566–570. doi: 10.3103/S1068371218100103
Supplementary files
