Increasing resilience and selection of a strategy for restoring transport networks in extreme natural processes

Cover Page

Cite item

Full Text

Abstract

Aim. The development of an approach to increasing resilience by selecting strategies for restoring transport networks affected by extreme natural processes.

Methods. This study evaluates the dynamics of extreme natural processes, specifically exogenous geological processes that can that can disrupt transport networks. It includes as framework for assessing the sustainability and restoration of transport networks under climate risk factors. Strategies for restoring the transport network were formulated.

Results. The formulated strategies enable network modeling of transport network topology, which can be represented as an undirected weighted graph with a set of nodes and edges. The proposed model allows determining the most effective strategy for quickly restoring the connectivity of the transport network by determining the optimal sequence of restoration for repairing road sections, considering restoration time. The efficiency of restoring damaged sections of the transport network is expected to decrease as the share of the restored network increases. Therefore, it is crucial to estimate the necessary extend of network restoration to perform the necessary extent of network restoration to support emergency and urgent tasks by RSChS formations in specific areas.

Conclusion. The analysis and assessment of alternative solutions for restoring the sustainability of transport networks considers the complexity of tasks under climate risk factors, such as extreme natural processes. In some cases, the RSChS problems do not require complete network restoration, unlike the tasks solved by the transport industry. This work aims to develop a framework for assessing restoration strategies, identifying the features of each of the considered strategies under uncertainty, and increasing operational sustainability. The proposed approach is flexible, allowing decision makers to assess various priorities during a specific natural emergency in a certain area, such as average recovery time, process efficiency, and uncertainty levels, when choosing the most desirable strategy. It is assumed that the average recovery time does not differ significantly among strategies for full network restoration. However, for partial restorations necessary for RSChS tasks, the average restoration time depends on the chosen strategy.

About the authors

Rasul G. Akhtyamov

Emperor Alexander I Saint Petersburg State Transport University

Author for correspondence.
Email: ahtamov_zchs@mail.ru
ORCID iD: 0000-0001-8732-219X
SPIN-code: 2812-3782

Candidate of Technical Sciences, Associate Professor

Russian Federation, Saint Petersburg

References

  1. Tuzun AD, Ozdamar L. A mathematical model for post-disaster road restoration: enabling accessibility and evacuation. Transp. Res. Part E: Logist. Transp. Rev. 2014;61:56–67. doi: 10.1016/j.tre.2013.10.009
  2. Çelik M, Ergun Ö, Keskinocak P. The post-disaster debris clearance problem under incomplete information. Oper. Res. 2015;63:65–85. doi: 10.1287/opre.2014.1342
  3. Schintler LA, Kulkarni R, Gorman S, Stough R. Using raster-based GIS and graph theory to analyze complex networks. Netw. Spat. Econ. 2007;7:301–313. doi: 10.1007/s11067-007-9029-4
  4. Aydin NY, Duzgun HS, Wenzel F, Heinimann HR. Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards. Nat. Hazards. 2018;91:37–68. doi: 10.1007/s11069-017-3112z
  5. Shangyao Y, Chu JC, Yu-Lin S. Optimal scheduling for highway emergency repairs under large-scale supply-demand perturbations. IEEE Trans. Intell. Transp. Syst. 2014;15:2378–2393. doi: 10.1109/TITS.2014.2313628
  6. Yan S, Lin CK, Chen SY. Optimal scheduling of logistical support for an emergency roadway repair work schedule. Eng. Optim. 2012;44:1035–1055. doi: 10.1080/0305215X.2011.628389
  7. CRED/UNDRR. The Human Cost of Natural Disasters 2015: A Global Perspective; Centre for Research on the Epidemiology of Disaster (CRED): Brussels, Belgium. 2015:255. doi: 10.1016/b978-0-12-817465-4.00015-7
  8. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,. 2021:3–32. doi: 10.1017/9781009157896.001
  9. Akhtyamov RG, Mescheriakova NA. Assessment of the contribution and measures to reduce the impact of the railway industry on the development of global warming. E3S Web of Conferences. TT21C-2023. 2023:01001. doi: 10.1051/e3sconf/202338301001
  10. Aydin NY, Duzgun H, Heinimann HR, Wenzel F. Framework for improving the resilience and recovery of transportation networks under geohazard risks. International Journal of Disaster Risk Reduction. 2018;31:832–843. doi: 10.1016/j.ijdrr.2018.07.022
  11. Maya DP, Sörensen K. A GRASP metaheuristic to improve accessibility after a disaster. R Spectr. 2011;33:525–542. doi: 10.1007/s00291-011-0247-2
  12. Chang SE. Transportation planning for disasters: an accessibility approach. Environ. Plan. 2003;35:1051–1072. doi: 10.1068/a35195
  13. Titova TS, Akhtyamov RG, Mescheriakova NA. Ways to improve climate change adaptation plan of the transport. Modern Transportation Systems and Technologies. 2023;9:5–18. doi: 10.17816/transsyst2023925-18
  14. Yang S, Hu F, Thompson RG, et al. Criticality ranking for components of a transportation network at risk from tropical cyclones. Int. J. Disaster Risk Reduct. 2018;28:43–55. doi: 10.1016/j.ijdrr.2018.02.017
  15. Nelson JR, Grubesic TH. A repeated sampling method for oil spill impact uncertainty and interpolation. Int. J. Disaster Risk Reduct. 2017;22:420–430. doi: 10.1016/j.ijdrr.2017.01.014
  16. D’Lima M, Medda F. A new measure of resilience: an application to the London underground. Transp. Res. Part A: Policy Pract. 2015;81:35–46. doi: 10.1016/j.tra.2015.05.017
  17. Padgett JE, Barbosa AR, Chen S, Cox D. Multiple-Hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: state-of-the-art review. J. Struct. Eng. 2017;143:04016188. doi: 10.1061/(ASCE)ST.1943-541X.0001672
  18. Baroud H, Ramirez-Marquez JE, Barker K, Rocco CM. Stochastic measures of network resilience: applications to waterway commodity flows. Risk Anal. 2014;34:1317–1335. doi: 10.1111/risa.12175

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the number of landslides in the world from 1900 to 2019

Download (141KB)
3. Fig. 2. Structure of assessment of sustainability and possibility of restoration of transport networks in conditions of realization of climate risk factors

Download (222KB)

Copyright (c) 2024 Akhtyamov R.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».